Abstract

The two-component kinetic model employing “fast” and “slow” metastable defects for the annealing behaviors in pin-type hydrogenated-amorphous-silicon- (a-Si:H-) based solar cells is simulated using a normalized fill factor. Reported annealing data on pin-type a-Si:H-based solar cells are revisited and fitted using the model to confirm its validity. It is verified that the two-component model is suitable for fitting the various experimental phenomena. In addition, the activation energy for annealing of the solar cells depends on the definition of the recovery time. From the thermally activated and high electric field annealing behaviors, the plausible microscopic mechanism on the defect removal process is discussed.