Advances in OptoElectronics

Advances in OptoElectronics / 2007 / Article
Special Issue

Recent Advances in Solar Cells

View this Special Issue

Review Article | Open Access

Volume 2007 |Article ID 065073 | https://doi.org/10.1155/2007/65073

F. O. Lenzmann, J. M. Kroon, "Recent Advances in Dye-Sensitized Solar Cells", Advances in OptoElectronics, vol. 2007, Article ID 065073, 10 pages, 2007. https://doi.org/10.1155/2007/65073

Recent Advances in Dye-Sensitized Solar Cells

Academic Editor: A. G. Aberle
Received23 May 2007
Accepted13 Sep 2007
Published04 Dec 2007

Abstract

This review describes recent advances in the research on dye-sensitized solar cells. After a brief discussion of the general operation principles and a presentation of record efficiencies, stability data and key technology drivers, current trends will be reviewed. The focus of this review is on materials development (sensitizers, nanostructured oxide films, and electrolyte), but commercialization aspects will also be briefly addressed. The review describes the most relevant characteristics and major trends in a compact way.

References

  1. B. C. O'Regan and M. Grätzel, “A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films,” Nature, vol. 353, no. 6346, pp. 737–740, 1991. View at: Publisher Site | Google Scholar
  2. S. A. Haque, E. Palomares, B. M. Cho et al., “Charge separation versus recombination in dye-sensitized nanocrystalline solar cells: the minimization of kinetic redundancy,” Journal of the American Chemical Society, vol. 127, no. 10, pp. 3456–3462, 2005. View at: Publisher Site | Google Scholar
  3. J. M. Kroon, B. C. O'Regan, J. A. M. van Roosmalen, and W. C. Sinke, “Dye-sensitized solar cells. Inorganic photochemistry,” in Handbook of Photochemistry and Photobiology, pp. 1–47, American Scientific, Stevenson Ranch, Calif, USA, 2003, chapter 1. View at: Google Scholar
  4. A. Hagfeldt and M. Grätzel, “Molecular photovoltaics,” Accounts of Chemical Research, vol. 33, no. 5, pp. 269–277, 2000. View at: Publisher Site | Google Scholar
  5. M. Grätzel, “The advent of mesoscopic injection solar cells,” Progress in Photovoltaics: Research and Applications, vol. 14, no. 5, pp. 429–442, 2006. View at: Publisher Site | Google Scholar
  6. M. Grätzel, “Perspectives for dye-sensitized nanocrystalline solar cells,” Progress in Photovoltaics: Research and Applications, vol. 8, no. 1, pp. 171–185, 2000. View at: Google Scholar
  7. M. A. Green, K. Emery, D. L. King, Y. Hishikawa, and W. Warta, “Solar cell efficiency tables (version 28),” Progress in Photovoltaics: Research and Applications, vol. 14, no. 5, pp. 455–461, 2006. View at: Publisher Site | Google Scholar
  8. M. Grätzel, “Mesoscopic solar cells for electricity and hydrogen production from sunlight,” Chemistry Letters, vol. 34, no. 1, pp. 8–13, 2005. View at: Publisher Site | Google Scholar
  9. Y. Chiba, A. Islam, Y. Watanabe, R. Komiya, N. Koide, and L. Han, “Dye-sensitized solar cells with conversion efficiency of 11.1%,” Japanese Journal of Applied Physics Part 2, vol. 45, no. 25, pp. L638–L640, 2006. View at: Publisher Site | Google Scholar
  10. Y. Chiba, A. Islam, K. Kakutani, R. Komiya, N. Koide, and L. Han, “High efficiency of dye-sensitized solar cells,” in Technical Digest of the 15th International Photovoltaic Science and Engineering Conference, pp. 665–666, Shanghai, China, October 2005. View at: Google Scholar
  11. J. M. Kroon, N. J. Bakker, H. J. P. Smit et al., “Nanocrystalline dye-sensitized solar cells having maximum performance,” Progress in Photovoltaics: Research and Applications, vol. 15, no. 1, pp. 1–18, 2007. View at: Publisher Site | Google Scholar
  12. A. Hinsch, J. M. Kroon, R. Kern, I. Uhlendorf, R. Sastrawan, and A. Meyer, “Long-term stability and efficiency of dye-sensitized solar cells,” in Proceedings of the 17th European Photovoltaic Solar Energy Conference, pp. 51–54, Munich, Germany, October 2001. View at: Google Scholar
  13. L. Han, A. Fukui, N. Fuke, N. Koide, and R. Yamanaka, “High efficiency of dye-sensitized solar cell and module,” in Proceedings of the 4th IEEE World Conference on Photovoltaic Energy Conversion (WCPEC '06), pp. 178–182, Waikoloa, Hawaii, USA, May 2006. View at: Publisher Site | Google Scholar
  14. P. M. Sommeling, M. Späth, H. J. P. Smit, N. J. Bakker, and J. M. Kroon, “Long-term stability testing of dye-sensitized solar cells,” Journal of Photochemistry and Photobiology A, vol. 164, no. 1–3, pp. 137–144, 2004. View at: Publisher Site | Google Scholar
  15. M. Späth, P. M. Sommeling, J. A. M. van Roosmalen et al., “Reproducible manufacturing of dye-sensitized solar cells on a semi-automated baseline,” Progress in Photovoltaics: Research and Applications, vol. 11, no. 3, pp. 207–220, 2003. View at: Publisher Site | Google Scholar
  16. R. Sastrawan, J. Beier, U. Belledin et al., “A glass frit-sealed dye solar cell module with integrated series connections,” Solar Energy Materials and Solar Cells, vol. 90, no. 11, pp. 1680–1691, 2006. View at: Publisher Site | Google Scholar
  17. R. Sastrawan, J. Beier, U. Belledin et al., “New interdigital design for large area dye solar modules using a lead-free glass frit sealing,” Progress in Photovoltaics: Research and Applications, vol. 14, no. 8, pp. 697–709, 2006. View at: Publisher Site | Google Scholar
  18. A. Hinsch, J. M. Kroon, R. Kern et al., “Long-term stability of dye-sensitised solar cells,” Progress in Photovoltaics: Research and Applications, vol. 9, no. 6, pp. 425–438, 2001. View at: Publisher Site | Google Scholar
  19. P. Wang, C. Klein, R. Humphry-Baker, S. M. Zakeeruddin, and M. Grätzel, “Stable 8% efficient nanocrystalline dye-sensitized solar cell based on an electrolyte of low volatility,” Applied Physics Letters, vol. 86, no. 12, Article ID 123508, p. 3 pages, 2005. View at: Publisher Site | Google Scholar
  20. D. Kuang, C. Klein, S. Ito et al., “High-efficiency and stable mesoscopic dye-sensitized solar cells based on a high molar extinction coefficient ruthenium sensitizer and nonvolatile electrolyte,” Advanced Materials, vol. 19, no. 8, pp. 1133–1137, 2007. View at: Publisher Site | Google Scholar
  21. D. Kuang, C. Klein, S. Ito et al., “High molar extinction coefficient ion-coordinating ruthenium sensitizer for efficient and stable mesoscopic dye-sensitized solar cells,” Advanced Functional Materials, vol. 17, no. 1, pp. 154–160, 2007. View at: Publisher Site | Google Scholar
  22. N. Kato, K. Higuchi, Y. Takeda et al., “Long-term stability of DSC module under outdoor working condition,” in Proceedings of Renewable Energy, Makuhari Messe, Chiba, Japan, October 2006. View at: Google Scholar
  23. T. Toyoda, T. Sano, J. Nakajima et al., “Outdoor performance of large scale DSC modules,” Journal of Photochemistry and Photobiology A, vol. 164, no. 1–3, pp. 203–207, 2004. View at: Publisher Site | Google Scholar
  24. T. Veltkamp, J. M. Kroon, P. Sommeling, and M. Wild-Scholten, “Dye sensitised solar cells for large-scale photovoltaics: determination of durability and environmental profile,” in Proceedings of Renewable Energy, Makuhari Messe, Chiba, Japan, October 2006. View at: Google Scholar
  25. C. Klein, M. K. Nazeeruddin, P. Liska et al., “Engineering of a novel ruthenium sensitizer and its application in dye-sensitized solar cells for conversion of sunlight into electricity,” Inorganic Chemistry, vol. 44, no. 2, pp. 178–180, 2005. View at: Publisher Site | Google Scholar
  26. P. Wang, C. Klein, R. Humphry-Baker, S. M. Zakeeruddin, and M. Grätzel, “A high molar extinction coefficient sensitizer for stable dye-sensitized solar cells,” Journal of the American Chemical Society, vol. 127, no. 3, pp. 808–809, 2005. View at: Publisher Site | Google Scholar
  27. D. Kuang, S. Ito, and B. Wenger, “High molar extinction coefficient heteroleptic ruthenium complexes for thin film dye-sensitized solar cells,” Journal of the American Chemical Society, vol. 128, no. 12, pp. 4146–4154, 2006. View at: Publisher Site | Google Scholar
  28. D. Kuang, C. Klein, H. J. Snaith et al., “Ion coordinating sensitizer for high efficiency mesoscopic dye-sensitized solar cells: influence of lithium ions on the photovoltaic performance of liquid and solid-state cells,” Nano Letters, vol. 6, no. 4, pp. 769–773, 2006. View at: Publisher Site | Google Scholar
  29. P. Wang, S. M. Zakeeruddin, J. E. Moser, M. K. Nazeeruddin, T. Sekiguchi, and M. Grätzel, “A stable quasi-solid-state dye-sensitized solar cell with an amphiphilic ruthenium sensitizer and polymer gel electrolyte,” Nature Materials, vol. 2, no. 6, pp. 402–407, 2003. View at: Publisher Site | Google Scholar
  30. P. Pechy, F. P. Rotzinger, M. K. Nazeeruddin et al., “Preparation of phosphonated polypyridyl ligands to anchor transition-metal complexes on oxide surfaces: application for the conversion of light to electricity with nanocrystalline TiO2 film,” Journal of the Chemical Society, Chemical Communications, no. 1, pp. 65–66, 1995. View at: Publisher Site | Google Scholar
  31. P. Wang, C. Klein, J.-E. Moser et al., “Amphiphilic ruthenium sensitizer with 4,4-diphosphonic acid-2,2-bipyridine as anchoring ligand for nanocrystalline dye sensitized solar cells,” Journal of Physical Chemistry B, vol. 108, no. 45, pp. 17553–17559, 2004. View at: Publisher Site | Google Scholar
  32. M. K. Nazeeruddin, P. Péchy, and M. Grätzel, “Efficient panchromatic sensitization of nanocrystalline TiO2 films by a black dye based on a trithiocyanato-ruthenium complex,” Chemical Communications, no. 18, pp. 1705–1706, 1997. View at: Google Scholar
  33. A. Burke, L. Schmidt-Mende, S. Ito, and M. Grätzel, “A novel blue dye for near-IR ‘dye-sensitised’ solar cell applications,” Chemical Communications, no. 3, pp. 234–236, 2007. View at: Publisher Site | Google Scholar
  34. J. Fang, L. Su, J. Wu, Y. Shu, and Z. Lu, “The photoresponse properties of nanocrystalline TiO2 particulate films co-modified with dyes,” New Journal of Chemistry, vol. 21, pp. 839–840, 1997. View at: Google Scholar
  35. P. Liska, K. R. Thampi, M. Grätzel et al., “Nanocrystalline dye-sensitized solar cell/copper indium gallium selenide thin-film tandem showing greater than 15% conversion efficiency,” Applied Physics Letters, vol. 88, no. 20, Article ID 203103, p. 3 pages, 2006. View at: Publisher Site | Google Scholar
  36. M. Dürr, A. Bamedi, A. Yasuda, and G. Nelles, “Tandem dye-sensitized solar cell for improved power conversion efficiencies,” Applied Physics Letters, vol. 84, no. 17, pp. 3397–3399, 2004. View at: Publisher Site | Google Scholar
  37. W. Kubo, A. Sakamoto, T. Kitamura, Y. Wada, and S. Yanagida, “Dye-sensitized solar cells: improvement of spectral response by tandem structure,” Journal of Photochemistry and Photobiology A, vol. 164, no. 1–3, pp. 33–39, 2004. View at: Publisher Site | Google Scholar
  38. T. Kitamura, M. Ikeda, K. Shigaki et al., “Phenyl-conjugated oligoene sensitizers for TiO2 solar cells,” Chemistry of Materials, vol. 16, no. 9, pp. 1806–1812, 2004. View at: Publisher Site | Google Scholar
  39. K. Hara, Z.-S. Wang, T. Sato et al., “Oligothiophene-containing coumarin dyes for efficient dye-sensitized solar cells,” Journal of Physical Chemistry B, vol. 109, no. 32, pp. 15476–15482, 2005. View at: Publisher Site | Google Scholar
  40. K. Hara, M. Kurashige, S. Ito et al., “Novel polyene dyes for highly efficient dye-sensitized solar cells,” Chemical communications, no. 2, pp. 252–253, 2003. View at: Publisher Site | Google Scholar
  41. T. Horiuchi, H. Miura, K. Sumioka, and S. Uchida, “High efficiency of dye-sensitized solar cells based on metal-free indoline dyes,” Journal of the American Chemical Society, vol. 126, no. 39, pp. 12218–12219, 2004. View at: Publisher Site | Google Scholar
  42. S. Ito, S. M. Zakeeruddin, R. Humphry-Baker et al., “High-efficiency organic-dye-sensitized solar cells controlled by nanocrystalline-TiO2 electrode thickness,” Advanced Materials, vol. 18, no. 9, pp. 1202–1205, 2006. View at: Publisher Site | Google Scholar
  43. M. Grätzel, “Electricity and hydrogen generation from sunlight by mesoscopic solar cells,” in Proveedings of the 16th International Conference on Photochemical Conversion and Storage of Solar Energy (IPS-16 '06), Uppsala, Sweden, July 2006. View at: Google Scholar
  44. R. Plass, S. Pelet, J. Krueger, M. Grätzel, and U. Bach, “Quantum dot sensitization of organic-inorganic hybrid solar cells,” Journal of Physical Chemistry B, vol. 106, no. 31, pp. 7578–7580, 2002. View at: Publisher Site | Google Scholar
  45. R. D. Schaller and V. I. Klimov, “High efficiency carrier multiplication in PbSe nanocrystals: implications for solar energy conversion,” Physical Review Letters, vol. 92, no. 18, Article ID 186601, p. 4 pages, 2004. View at: Publisher Site | Google Scholar
  46. M. Nanu, J. Schoonman, and A. Goossens, “Inorganic nanocomposites of n-and p-type semiconductors: a new type of three-dimensional solar cell,” Advanced Materials, vol. 16, no. 5, pp. 453–456, 2004. View at: Publisher Site | Google Scholar
  47. M. Nanu, J. Schoonman, and A. Goossens, “Nanocomposite three-dimensional solar cells obtained by chemical spray deposition,” Nano Letters, vol. 5, no. 9, pp. 1716–1719, 2005. View at: Publisher Site | Google Scholar
  48. C. J. Barbé, F. Arendse, P. Comte et al., “Nanocrystalline titanium oxide electrodes for photovoltaic applications,” Journal of the American Ceramic Society, vol. 80, no. 12, pp. 3157–3171, 1997. View at: Google Scholar
  49. P. M. Sommeling, B. C. O'Regan, R. R. Haswell et al., “Influence of a TiCl4 post-treatment on nanocrystalline TiO2 films in dye-sensitized solar cells,” Journal of Physical Chemistry B, vol. 110, no. 39, pp. 19191–19197, 2006. View at: Publisher Site | Google Scholar
  50. S. Hore, E. Palomares, H. Smit et al., “Acid versus base peptization of mesoporous nanocrystalline TiO2 films: functional studies in dye sensitized solar cells,” Journal of Materials Chemistry, vol. 15, no. 3, pp. 412–418, 2005. View at: Publisher Site | Google Scholar
  51. K. Keis, E. Magnusson, H. Lindström, S.-E. Lindquist, and A. Hagfeldt, “A 5% efficient photoelectrochemical solar cell based on nanostructured ZnO electrodes,” Solar Energy Materials and Solar Cells, vol. 73, no. 1, pp. 51–58, 2002. View at: Publisher Site | Google Scholar
  52. K. Sayama, H. Sugihara, and H. Arakawa, “Photoelectrochemical properties of a porous Nb2O5 electrode sensitized by a ruthenium dye,” Chemistry of Materials, vol. 10, no. 12, pp. 3825–3832, 1998. View at: Google Scholar
  53. S. Burnside, J.-E. Moser, K. Brooks, M. Grätzel, and D. Cahen, “Nanocrystalline mesoporous strontium titanate as photoelectrode material for photosensitized solar devices: increasing photovoltage through flatband potential engineering,” Journal of Physical Chemistry B, vol. 103, no. 43, pp. 9328–9332, 1999. View at: Publisher Site | Google Scholar
  54. K. Tennakone, P. K. M. Bandaranayake, P. V. V. Jayaweera, A. Konno, and G. R. R. A. Kumara, “Dye-sensitized composite semiconductor nanostructures,” Physica E, vol. 14, no. 1-2, pp. 190–196, 2002. View at: Publisher Site | Google Scholar
  55. E. Palomares, J. N. Clifford, S. A. Haque, T. Lutz, and J. R. Durrant, “Slow charge recombination in dye-sensitised solar cells (DSSC) using Al2O3 coated nanoporous TiO2 films,” Chemical Communications, no. 14, pp. 1464–1465, 2002. View at: Google Scholar
  56. A. Kay and M. Grätzel, “Dye-sensitized core-shell nanocrystals: improved efficiency of mesoporous tin oxide electrodes coated with a thin layer of an insulating oxide,” Chemistry of Materials, vol. 14, no. 7, pp. 2930–2935, 2002. View at: Publisher Site | Google Scholar
  57. K. Tennakone, J. Bandara, P. K. M. Bandaranayake, G. R. A. Kumara, and A. Konno, “Enhanced efficiency of a dye-sensitized solar cell made from MgO-coated nanocrystalline SnO2,” Japanese Journal of Applied Physics Part 2, vol. 40, no. 7 B, pp. L732–L734, 2001. View at: Publisher Site | Google Scholar
  58. B. C. O'Regan, S. Scully, A. C. Mayer, E. Palomares, and J. Durrant, “The effect of Al2O3 barrier layers in TiO2/Dye/CuSCN photovoltage cells explored by recombination and DOS characterization using transient photovoltage measurements,” Journal of Physical Chemistry B, vol. 109, no. 10, pp. 4616–4623, 2005. View at: Publisher Site | Google Scholar
  59. G. K. Mor, K. Shankar, M. Paulose, O. K. Varghese, and C. A. Grimes, “Use of highly-ordered TiO2 nanotube arrays in dye-sensitized solar cells,” Nano Letters, vol. 6, no. 2, pp. 215–218, 2006. View at: Publisher Site | Google Scholar
  60. M. Zukalovà, A. Zukal, L. Kavan, M. K. Nazeeruddin, P. Liska, and M. Grätzel, “Organized mesoporous TiO2 films exhibiting greatly enhanced performance in dye-sensitized solar cells,” Nano Letters, vol. 5, no. 9, pp. 1789–1792, 2005. View at: Publisher Site | Google Scholar
  61. K. Zhu, N. R. Neale, A. Miedaner, and A. J. Frank, “Enhanced charge-collection efficiencies and light scattering in dye-sensitized solar cells using oriented TiO2 nanotubes arrays,” Nano Letters, vol. 7, no. 1, pp. 69–74, 2007. View at: Publisher Site | Google Scholar
  62. K. Shankar, G. K. Mor, H. E. Prakasam et al., “Highly-ordered TiO2 nanotube arrays up to 220 μm in length: use in water photoelectrolysis and dye-sensitized solar cells,” Nanotechnology, vol. 18, no. 6, Article ID 065707, p. 11 pages, 2007. View at: Publisher Site | Google Scholar
  63. H. Lindström, A. Holmberg, E. Magnusson, L. Malmqvist, and A. Hagfeldt, “A new method to make dye-sensitized nanocrystalline solar cells at room temperature,” Journal of Photochemistry and Photobiology A, vol. 145, no. 1-2, pp. 107–112, 2001. View at: Publisher Site | Google Scholar
  64. T. Miyasaka and Y. Kijitori, “Low-temperature fabrication of dye-sensitized plastic electrodes by electrophoretic preparation of mesoporous TiO2 layers,” Journal of the Electrochemical Society, vol. 151, no. 11, pp. A1767–A1773, 2004. View at: Publisher Site | Google Scholar
  65. R. Gaudiana, “Dye sensitized titania photovoltaic cells on flexible substrates-concept to commercialization,” Journal of Macromolecular Science Part A, vol. 39 A, no. 10, pp. 1259–1264, 2002. View at: Publisher Site | Google Scholar
  66. D. Zhang, T. Yoshida, and H. Minoura, “Low-temperature fabrication of efficient porous titania photoelectrodes by hydrothermal crystallization at the solid/gas interface,” Advanced Materials, vol. 15, no. 10, pp. 814–817, 2003. View at: Publisher Site | Google Scholar
  67. T. Loewenstein, K. Nonomura, T. Yoshida et al., “Efficient sensitization of mesoporous electrodeposited zinc oxide by cis-bis(isothiocyanato)bis(2,2 -bipyridyl-4,4 -dicarboxylato)-ruthenium(II),” Journal of the Electrochemical Society, vol. 153, no. 4, pp. A699–A704, 2006. View at: Publisher Site | Google Scholar
  68. S. Ito, N.-L. C. Ha, G. Rothenberger et al., “High-efficiency (7.2%) flexible dye-sensitized solar cells with Ti-metal substrate for nanocrystalline-TiO2 photoanode,” Chemical Communications, no. 38, pp. 4004–4006, 2006. View at: Publisher Site | Google Scholar
  69. S. Cazzanti, S. Caramori, R. Argazzi, C. M. Elliott, and C. A. Bignozzi, “Efficient non-corrosive electron-transfer mediator mixtures for dye-sensitized solar cells,” Journal of the American Chemical Society, vol. 128, no. 31, pp. 9996–9997, 2006. View at: Publisher Site | Google Scholar
  70. H. Nusbaumer, S. M. Zakeeruddin, J.-E. Moser, and M. Grätzel, “An alternative efficient redox couple for the dye-sensitized solar cell system,” Chemistry - A European Journal, vol. 9, no. 16, pp. 3756–3763, 2003. View at: Publisher Site | Google Scholar
  71. P. Wang, S. M. Zakeeruddin, J.-E. Moser, R. Humphry-Baker, and M. Grätzel, “A solvent-free, SeCN/(SeCN)3 based ionic liquid electrolyte for high-efficiency dye-sensitized nanocrystalline solar cells,” Journal of the American Chemical Society, vol. 126, no. 23, pp. 7164–7165, 2004. View at: Publisher Site | Google Scholar
  72. W. Kubo, T. Kitamura, K. Hanabusa, Y. Wada, and S. Yanagida, “Quasi-solid-state dye-sensitized solar cells using room temperature molten salts and a low molecular weight gelator,” Chemical Communications, no. 4, pp. 374–375, 2002. View at: Publisher Site | Google Scholar
  73. R. Kawano, H. Matsui, C. Matsuyama et al., “High performance dye-sensitized solar cells using ionic liquids as their electrolytes,” Journal of Photochemistry and Photobiology A, vol. 164, no. 1–3, pp. 87–92, 2004. View at: Publisher Site | Google Scholar
  74. D. Kuang, P. Wang, S. Ito, S. M. Zakeeruddin, and M. Grätzel, “Stable mesoscopic dye-sensitized solar cells based on tetracyanoborate ionic liquid electrolyte,” Journal of the American Chemical Society, vol. 128, no. 24, pp. 7732–7733, 2006. View at: Publisher Site | Google Scholar
  75. W. Kubo, Y. Makimoto, T. Kitamura, Y. Wada, and S. Yanagida, “Quasi-solid-state dye-sensitized solar cell with ionic polymer electrolyte,” Chemistry Letters, no. 9, pp. 948–949, 2002. View at: Publisher Site | Google Scholar
  76. N. Mohmeyer, D. Kuang, P. Wang, H.-W. Schmidt, S. M. Zakeeruddin, and M. Grätzel, “An efficient organogelator for ionic liquids to prepare stable quasi-solid-state dye-sensitized solar cells,” Journal of Materials Chemistry, vol. 16, no. 29, pp. 2978–2983, 2006. View at: Publisher Site | Google Scholar
  77. H. Usui, H. Matsui, N. Tanabe, and S. Yanagida, “Improved dye-sensitized solar cells using ionic nanocomposite gel electrolytes,” Journal of Photochemistry and Photobiology A, vol. 164, no. 1–3, pp. 97–101, 2004. View at: Publisher Site | Google Scholar
  78. P. Wang, S. M. Zakeeruddin, P. Comte, I. Exnar, and M. Grätzel, “Gelation of ionic liquid-based electrolytes with silica nanoparticles for quasi-solid-state dye-sensitized solar cells,” Journal of the American Chemical Society, vol. 125, no. 5, pp. 1166–1167, 2003. View at: Publisher Site | Google Scholar
  79. P. Wang, S. M. Zakeeruddin, J. E. Moser, M. K. Nazeeruddin, T. Sekiguchi, and M. Grätzel, “A stable quasi-solid-state dye-sensitized solar cell with an amphiphilic ruthenium sensitizer and polymer gel electrolyte,” Nature Materials, vol. 2, no. 6, pp. 402–407, 2003. View at: Publisher Site | Google Scholar
  80. B. C. O'Regan and F. O. Lenzmann, “Charge transport and recombination in a nanoscale interpenetrating network of n-type and p-type semiconductors: transient photocurrent and photovoltage studies of TiO2/ Dye/CuSCN photovoltaic cells,” Journal of Physical Chemistry B, vol. 108, no. 14, pp. 4342–4350, 2004. View at: Publisher Site | Google Scholar
  81. J. Krüger, R. Plass, L. Cevey, M. Piccirelli, M. Grätzel, and U. Bach, “High efficiency solid-state photovoltaic device due to inhibition of interface charge recombination,” Applied Physics Letters, vol. 79, no. 13, pp. 2085–2087, 2001. View at: Publisher Site | Google Scholar
  82. H. J. Snaith and M. Grätzel, “Enhanced charge mobility in a molecular hole transporter via addition of redox inactive ionic dopant: implication to dye-sensitized solar cells,” Applied Physics Letters, vol. 89, no. 26, Article ID 262114, p. 3 pages, 2006. View at: Publisher Site | Google Scholar
  83. J. Krüger, R. Plass, M. Grätzeltzel, and H.-J. Matthieu, “Improvement of the photovoltaic performance of solid-state dye-sensitized device by silver complexation of the sensitizer cis-bis(4,4-dicarboxy-2,2bipyridine)-bis(isothiocyanato) ruthenium(II),” Applied Physics Letters, vol. 81, no. 2, pp. 367–369, 2002. View at: Publisher Site | Google Scholar
  84. L. Schmidt-Mende and M. Grätzel, “TiO2 pore-filling and its effect on the efficiency of solid-state dye-sensitized solar cells,” Thin Solid Films, vol. 500, no. 1-2, pp. 296–301, 2006. View at: Publisher Site | Google Scholar
  85. U. Bach, D. Lupo, P. Comte et al., “Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies,” Nature, vol. 395, no. 6702, pp. 583–585, 1998. View at: Publisher Site | Google Scholar
  86. B. O'Regan, F. O. Lenzmann, R. Muis, and J. Wienke, “A solid-state dye-sensitized solar cell fabricated with pressure-treated P25-TiO2 and CuSCN: analysis of pore filling and IV characteristics,” Chemistry of Materials, vol. 14, no. 12, pp. 5023–5029, 2002. View at: Publisher Site | Google Scholar
  87. A. Konno, T. Kitagawa, H. Kida, G. R. A. Kumara, and K. Tennakone, “The effect of particle size and conductivity of CuI layer on the performance of solid-state dye-sensitized photovoltaic cells,” Current Applied Physics, vol. 5, no. 2, pp. 149–151, 2005. View at: Publisher Site | Google Scholar
  88. G. R. A. Kumara, S. Kaneko, M. Okuya, and K. Tennakone, “Fabrication of dye-sensitized solar cells using triethylamine hydrothiocyanate as a CuI crystal growth inhibitor,” Langmuir, vol. 18, no. 26, pp. 10493–10495, 2002. View at: Publisher Site | Google Scholar

Copyright © 2007 F. O. Lenzmann and J. M. Kroon. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


More related articles

 PDF Download Citation Citation
 Order printed copiesOrder
Views849
Downloads2729
Citations

Related articles

Article of the Year Award: Outstanding research contributions of 2020, as selected by our Chief Editors. Read the winning articles.