Table of Contents Author Guidelines Submit a Manuscript
Advances in OptoElectronics
Volume 2011 (2011), Article ID 196707, 6 pages
http://dx.doi.org/10.1155/2011/196707
Research Article

Oblique Du-Fort Frankel Beam Propagation Method

The George Green Institute for Electromagnetic Research, University of Nottingham, Nottingham NG7 2RD, UK

Received 15 May 2010; Accepted 24 July 2010

Academic Editor: Jun Shibayama

Copyright © 2011 Ken Chan et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. Vassallo, “Interest of improved three-point formulas for finite-difference modeling of optical devices,” Journal of the Optical Society of America A, vol. 14, no. 12, pp. 3273–3284, 1997. View at Google Scholar · View at Scopus
  2. Y.-P. Chiou, Y.-C. Chiang, and H.-C. Chang, “Improved three-point formulas considering the interface conditions in the finite-difference analysis of step-index optical devices,” Journal of Lightwave Technology, vol. 18, no. 2, pp. 243–251, 2000. View at Publisher · View at Google Scholar · View at Scopus
  3. Y.-C. Chiang, Y.-P. Chiou, and H.-C. Chang, “Improved full-vectorial finite-difference mode solver for optical waveguides with step-index profiles,” Journal of Lightwave Technology, vol. 20, no. 8, pp. 1609–1618, 2002. View at Publisher · View at Google Scholar · View at Scopus
  4. J. Yamauchi, Y. Nito, and H. Nakano, “A modified semivectorial BPM retaining the effects of the longitudinal field component and its application to the design of a spot-size converter,” Journal of Lightwave Technology, vol. 27, no. 13, pp. 2470–2476, 2009. View at Publisher · View at Google Scholar · View at Scopus
  5. T. M. Benson, P. Sewell, S. Sujecki, and P. C. Kendall, “Structure related beam propagation,” Optical and Quantum Electronics, vol. 31, no. 9, pp. 689–703, 1999. View at Google Scholar · View at Scopus
  6. D. Z. Djurdjevic, T. M. Benson, P. Sewell, and A. Vukovic, “Fast and accurate analysis of 3-D curved optical waveguide couplers,” Journal of Lightwave Technology, vol. 22, no. 10, pp. 2333–2340, 2004. View at Publisher · View at Google Scholar · View at Scopus
  7. S. Sujecki, P. Sewell, T. M. Benson, and P. C. Kendall, “Novel beam propagation algorithms for tapered optical structures,” Journal of Lightwave Technology, vol. 17, no. 11, pp. 2379–2388, 1999. View at Publisher · View at Google Scholar · View at Scopus
  8. G. R. Hadley, “Slanted-wall beam propagation,” Journal of Lightwave Technology, vol. 25, no. 9, pp. 2367–2375, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. J. Yamauchi, J. Shibayama, and H. Nakano, “Finite-difference beam propagation method using the oblique coordinate system,” Electronics and Communications in Japan, Part II: Electronics, vol. 78, no. 6, pp. 20–27, 1995. View at Google Scholar · View at Scopus
  10. P. Sewell, T. M. Benson, T. Anada, and P. C. Kendall, “Bi-oblique propagation analysis of symmetric and asymmetric Y-junctions,” Journal of Lightwave Technology, vol. 15, no. 4, pp. 688–696, 1997. View at Google Scholar · View at Scopus
  11. S. Sujecki, “Wide-angle, finite-difference beam propagation in oblique coordinate system,” Journal of the Optical Society of America A, vol. 25, no. 1, pp. 138–145, 2008. View at Publisher · View at Google Scholar · View at Scopus
  12. S. Sujecki, “Generalized rectangular finite difference beam propagation method,” Applied Optics, vol. 47, no. 23, pp. 4280–4286, 2008. View at Publisher · View at Google Scholar
  13. H. A. van der Vorst, “Bi-CGSTAB: a fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems,” SIAM Journal on Scientific Computing, vol. 13, no. 2, pp. 631–644, 1992. View at Google Scholar · View at Scopus
  14. D. W. Peaceman and H. H. Rachford, “The numerical solution of parabolic and elliptic differential equations,” Journal of the Society for Industrial and Applied Mathematics, vol. 3, p. 28, 1955. View at Google Scholar · View at Scopus
  15. H. M. Masoudi and J. M. Arnold, “Spurious modes in the DuFort-Frankel finite-difference beam propagation method,” IEEE Photonics Technology Letters, vol. 9, no. 10, pp. 1382–1384, 1997. View at Google Scholar · View at Scopus
  16. P. Sewell, T. M. Benson, and A. Vukovic, “A stable DuFort-Frankel Beam-Propagation method for lossy structures and those with perfectly matched layers,” Journal of Lightwave Technology, vol. 23, no. 1, pp. 374–381, 2005. View at Publisher · View at Google Scholar · View at Scopus
  17. S. Sujecki, T. M. Benson, P. Sewell, and P. C. Kendall, “Novel vectorial analysis of optical waveguides,” Journal of Lightwave Technology, vol. 16, no. 7, pp. 1329–1335, 1998. View at Google Scholar · View at Scopus