Table of Contents Author Guidelines Submit a Manuscript
Advances in OptoElectronics
Volume 2011, Article ID 394683, 8 pages
http://dx.doi.org/10.1155/2011/394683
Research Article

Moldless PEGDA-Based Optoelectrofluidic Platform for Microparticle Selection

1Department of Electrophysics, National Chiao Tung University, Hsinchu 30010, Taiwan
2R & D Division, SINONAR Corporation, Hsinchu 30078, Taiwan
3Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu 30010, Taiwan

Received 6 March 2011; Revised 20 May 2011; Accepted 4 June 2011

Academic Editor: Aaron T. Ohta

Copyright © 2011 Shih-Mo Yang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. S. Dittrich and A. Manz, “Lab-on-a-chip: microfluidics in drug discovery,” Nature Reviews Drug Discovery, vol. 5, no. 3, pp. 210–218, 2006. View at Publisher · View at Google Scholar · View at Scopus
  2. A. Ashkin, J. M. Dziedzic, and T. Yamane, “Optical trapping and manipulation of single cells using infrared laser beams,” Nature, vol. 330, no. 6150, pp. 769–771, 1987. View at Google Scholar
  3. K. C. Neuman and S. M. Block, “Optical trapping,” Review of Scientific Instruments, vol. 75, no. 9, pp. 2787–2809, 2004. View at Publisher · View at Google Scholar · View at Scopus
  4. E. R. Dufresne and D. G. Grier, “Optical tweezer arrays and optical substrates created with diffractive optics,” Review of Scientific Instruments, vol. 69, no. 5, pp. 1974–1977, 1998. View at Google Scholar · View at Scopus
  5. B. Sun, Y. Roichman, and D. G. Grier, “Theory of holographic optical trapping,” Optics Express, vol. 16, no. 20, pp. 15765–15776, 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. J. R. Moffitt, Y. R. Chemla, S. B. Smith, and C. Bustamante, “Recent advances in optical tweezers,” Annual Review of Biochemistry, vol. 77, no. 1, pp. 205–228, 2008. View at Publisher · View at Google Scholar · View at Scopus
  7. D. G. Grier, “A revolution in optical manipulation,” Nature, vol. 424, no. 6950, pp. 810–816, 2003. View at Publisher · View at Google Scholar · View at Scopus
  8. R. Pethig, “Dielectrophoresis: status of the theory, technology, and applications,” Biomicrofluidics, vol. 4, no. 2, article 022811, 35 pages, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. C. Zhang, K. Khoshmanesh, A. Mitchell, and K. Kalantar-Zadeh, “Dielectrophoresis for manipulation of micro/nano particles in microfluidic systems,” Analytical and Bioanalytical Chemistry, vol. 396, no. 1, pp. 401–420, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. P. Y. Chiou, A. T. Ohta, and M. C. Wu, “Massively parallel manipulation of single cells and microparticles using optical images,” Nature, vol. 436, no. 7049, pp. 370–372, 2005. View at Publisher · View at Google Scholar · View at Scopus
  11. Y. S. Lu, Y. P. Huang, J. A. Yeh, C. Lee, and Y. H. Chang, “Controllability of non-contact cell manipulation by image dielectrophoresis (iDEP),” Optical and Quantum Electronics, vol. 37, no. 13–15, pp. 1385–1395, 2005. View at Publisher · View at Google Scholar · View at Scopus
  12. H.-Y. Hsu, A. T. Ohta, P. Y. Chiou, A. Jamshidi, S. L. Neale, and M. C. Wu, “Phototransistor-based optoelectronic tweezers for dynamic cell manipulation in cell culture media,” Lab on a Chip, vol. 10, no. 2, pp. 165–172, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. A. T. Ohta, P. Y. Chiou, T. H. Han et al., “Dynamic cell and microparticle control via optoelectronic tweezers,” Journal of Microelectromechanical Systems, vol. 16, no. 3, pp. 491–499, 2007. View at Publisher · View at Google Scholar · View at Scopus
  14. A. T. Ohta, P. Y. Chiou, H. L. Phan et al., “Optically controlled cell discrimination and trapping using optoelectronic tweezers,” IEEE Journal on Selected Topics in Quantum Electronics, vol. 13, no. 2, pp. 235–242, 2007. View at Publisher · View at Google Scholar · View at Scopus
  15. A. T. Ohta, M. Garcia, J. K. Valley et al., “Motile and non-motile sperm diagnostic manipulation using optoelectronic tweezers,” Lab on a Chip, vol. 10, no. 23, pp. 3213–3217, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. M. Hoeb, J. O. Rädler, S. Klein, M. Stutzmann, and M. S. Brandt, “Light-induced dielectrophoretic manipulation of DNA,” Biophysical Journal, vol. 93, no. 3, pp. 1032–1038, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. P.-Y. Chiou, A. T. Ohta, A. Jamshidi, H. Y. Hsu, and M. C. Wu, “Light-actuated AC electroosmosis for nanoparticle manipulation,” Journal of Microelectromechanical Systems, vol. 17, no. 3, pp. 525–531, 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. A. Jamshidi, P. J. Pauzauskie, P. J. Schuck et al., “Dynamic manipulation and separation of individual semiconducting and metallic nanowires,” Nature Photonics, vol. 2, no. 2, pp. 86–89, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. A. T. Ohta et al., “Trapping and transport of silicon nanowires using lateral-field optoelectronic tweezers,” in Proceedings of the Conference on Lasers and Electro-Optics (CLEO '07), 2007.
  20. A. T. Ohta, S. L. Neale, H. Y. Hsu, J. K. Valley, and M. C. Wu, “Parallel assembly of nanowires using lateral-field optoelectronic tweezers,” in Proceedings of the 2008 IEEE/LEOS International Conference on Optical MEMS and Nanophotonics (OPT MEMS '10), pp. 7–8, August 2008. View at Publisher · View at Google Scholar · View at Scopus
  21. M.-C. Tien, A. T. Ohta, K. Yu, S. L. Neale, and M. C. Wu, “Heterogeneous integration of InGaAsP microdisk laser on a silicon platform using optofluidic assembly,” Applied Physics A, vol. 95, no. 4, pp. 967–972, 2009. View at Publisher · View at Google Scholar · View at Scopus
  22. A. Khademhosseini, G. Eng, J. Yeh et al., “Micromolding of photocrosslinkable hyaluronic acid for cell encapsulation and entrapment,” Journal of Biomedical Materials Research, vol. 79, no. 3, pp. 522–532, 2006. View at Publisher · View at Google Scholar · View at Scopus
  23. D. T. Chiu, N. L. Jeon, S. Huang et al., “Patterned deposition of cells and proteins onto surfaces by using three-dimensional microfluidic systems,” Proceedings of the National Academy of Sciences of the United States of America, vol. 97, no. 6, pp. 2408–2413, 2000. View at Google Scholar · View at Scopus
  24. J. Fukuda, A. Khademhosseini, Y. Yeo et al., “Micromolding of photocrosslinkable chitosan hydrogel for spheroid microarray and co-cultures,” Biomaterials, vol. 27, no. 30, pp. 5259–5267, 2006. View at Publisher · View at Google Scholar · View at Scopus
  25. J. W. Nichol, S. T. Koshy, H. Bae, C. M. Hwang, S. Yamanlar, and A. Khademhosseini, “Cell-laden microengineered gelatin methacrylate hydrogels,” Biomaterials, vol. 31, no. 21, pp. 5536–5544, 2010. View at Publisher · View at Google Scholar · View at Scopus
  26. Y. S. Hwang, G. C. Bong, D. Ortmann, N. Hattori, H. C. Moeller, and A. Khademhosseinia, “Microwell-mediated control of embryoid body size regulates embryonic stem cell fate via differential expression of WNT5a and WNT11,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 40, pp. 16978–16983, 2009. View at Publisher · View at Google Scholar · View at Scopus
  27. H. C. Moeller, M. K. Mian, S. Shrivastava, B. G. Chung, and A. Khademhosseini, “A microwell array system for stem cell culture,” Biomaterials, vol. 29, no. 6, pp. 752–763, 2008. View at Publisher · View at Google Scholar · View at Scopus
  28. J. A. Burdick and K. S. Anseth, “Photoencapsulation of osteoblasts in injectable RGD-modified PEG hydrogels for bone tissue engineering,” Biomaterials, vol. 23, no. 22, pp. 4315–4323, 2002. View at Publisher · View at Google Scholar · View at Scopus
  29. Y. Du, E. Lo, S. Ali, and A. Khademhosseini, “Directed assembly of cell-laden microgels for fabrication of 3D tissue constructs,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 28, pp. 9522–9527, 2008. View at Publisher · View at Google Scholar · View at Scopus
  30. A. Revzin, R. J. Russell, V. K. Yadavalli et al., “Fabrication of poly(ethylene glycol) hydrogel microstructures using photolithography,” Langmuir, vol. 17, no. 18, pp. 5440–5447, 2001. View at Publisher · View at Google Scholar · View at Scopus
  31. C. M. Hwang, W. Y. Sim, S. H. Lee et al., “Benchtop fabrication of PDMS microstructures by an unconventional photolithographic method,” Biofabrication, vol. 2, no. 4, Article ID 045001, 2010. View at Google Scholar
  32. G.-B. Lee, Y. H. Lin, W. Y. Lin, W. Wang, and T. F. Guo, “Optically-induced dielectrophoresis using polymer materials for biomedical applications,” in Proceedings of the The 15th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS '09), pp. 2135–2138, June 2009. View at Publisher · View at Google Scholar · View at Scopus
  33. S. M. Yang, T. M. Yu, H. P. Huang, M. Y. Ku, L. Hsu, and C. H. Liu, “Dynamic manipulation and patterning of microparticles and cells by using TiOPc-based optoelectronic dielectrophoresis,” Optics Letters, vol. 35, no. 12, pp. 1959–1961, 2010. View at Publisher · View at Google Scholar · View at Scopus
  34. R. Pethig, “Dielectrophoresis: using inhomogeneous AC electrical fields to separate and manipulate cells,” Critical Reviews in Biotechnology, vol. 16, no. 4, pp. 331–348, 1996. View at Google Scholar · View at Scopus
  35. T. B. Jones, “Basic theory of dielectrophoresis and electrorotation,” IEEE Engineering in Medicine and Biology Magazine, vol. 22, no. 6, pp. 33–42, 2003. View at Publisher · View at Google Scholar · View at Scopus
  36. C.-T. Ho, R. Z. Lin, W. Y. Chang, H. Y. Chang, and C. H. Liu, “Rapid heterogeneous liver-cell on-chip patterning via the enhanced field-induced dielectrophoresis trap,” Lab on a Chip, vol. 6, no. 6, pp. 724–734, 2006. View at Publisher · View at Google Scholar · View at Scopus
  37. B. H. Lapizco-Encinas and M. Rito-Palomares, “Dielectrophoresis for the manipulation of nanobioparticles,” Electrophoresis, vol. 28, no. 24, pp. 4521–4538, 2007. View at Publisher · View at Google Scholar · View at Scopus
  38. Y.-H. Lin and G.-B. Lee, “Optically induced flow cytometry for continuous microparticle counting and sorting,” Biosensors and Bioelectronics, vol. 24, no. 4, pp. 572–578, 2008. View at Publisher · View at Google Scholar · View at Scopus
  39. J. K. Valley, S. Neale, H. Y. Hsu, A. T. Ohta, A. Jamshidi, and M. C. Wu, “Parallel single-cell light-induced electroporation and dielectrophoretic manipulation,” Lab on a Chip, vol. 9, no. 12, pp. 1714–1720, 2009. View at Publisher · View at Google Scholar · View at Scopus