Table of Contents Author Guidelines Submit a Manuscript
Advances in OptoElectronics
Volume 2012 (2012), Article ID 927931, 6 pages
Research Article

3D Photonic Nanostructures via Diffusion-Assisted Direct fs Laser Writing

1Department of Quantum Electronics, Vilnius University, 02300 Vilnius, Lithuania
2IESL-FORTH, N. Plastira 100, Heraklion, 70013 Crete, Greece
3Department of Physics, University of Crete, Heraklion, 71003 Crete, Greece
4Department of Materials Science and Technology, University of Crete, Heraklion, 71003 Crete, Greece
5Ames Laboratory, Department of Physics and Astronomy, Iowa State University, Ames, IA 50011-2011, USA
6Institute of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod, Russia

Received 28 May 2012; Revised 24 July 2012; Accepted 24 July 2012

Academic Editor: Natalia M. Litchinitser

Copyright © 2012 Gabija Bickauskaite et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


We present our research into the fabrication of fully three-dimensional metallic nanostructures using diffusion-assisted direct laser writing, a technique which employs quencher diffusion to fabricate structures with resolution beyond the diffraction limit. We have made dielectric 3D nanostructures by multiphoton polymerization using a metal-binding organic-inorganic hybrid material, and we covered them with silver using selective electroless plating. We have used this method to make spirals and woodpiles with 600 nm intralayer periodicity. The resulting photonic nanostructures have a smooth metallic surface and exhibit well-defined diffraction spectra, indicating good fabrication quality and internal periodicity. In addition, we have made dielectric woodpile structures decorated with gold nanoparticles. Our results show that diffusion-assisted direct laser writing and selective electroless plating can be combined to form a viable route for the fabrication of 3D dielectric and metallic photonic nanostructures.