Table of Contents Author Guidelines Submit a Manuscript
Advances in OptoElectronics
Volume 2013, Article ID 856148, 5 pages
http://dx.doi.org/10.1155/2013/856148
Research Article

Important Effect of Defect Parameters on the Characteristics of Thue-Morse Photonic Crystal Filters

1Electrical Department, Faculty of Engineering, Tabriz Branch, Islamic Azad University, Tabriz, Iran
2Electrical Department, Faculty of Engineering, Ahar Branch, Islamic Azad University, Ahar, Iran

Received 24 November 2012; Revised 22 February 2013; Accepted 24 February 2013

Academic Editor: Jung Huang

Copyright © 2013 Hamed Alipour-Banaei et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. G. Mun, J. H. Moon, H. K. Lee, J. Y. Kim, and C. H. Lee, “A WDM-PON with a 40 Gb/s (32 × 1.25 Gb/s) capacity based on wavelength-locked Fabry-Perot laser diodes,” Optics Express, vol. 16, no. 15, pp. 11361–11368, 2008. View at Publisher · View at Google Scholar · View at Scopus
  2. I. Gasulla and J. Capmany, “Tb/s·km Multimode fiber link combining WDM transmission and low-linewidth lasers,” Optics Express, vol. 16, pp. 8033–8038, 2008. View at Publisher · View at Google Scholar
  3. Z. Xu, J. Wang, Q. He, L. Cao, P. Su, and G. Jin, “Optical filter based on contra-directional waveguide coupling in a 2D photonic crystal with square lattice of dielectric rods,” Optics Express, vol. 13, no. 15, pp. 5608–5613, 2005. View at Publisher · View at Google Scholar · View at Scopus
  4. H. Ghafoori-Fard, M. J. Moghimi, and A. Rostami, “Linear and nonlinear superimposed bragg grating: a novel proposal for all-optical multi-wavelength filtering and switching,” Progress in Electromagnetics Research, vol. 77, pp. 243–266, 2007. View at Google Scholar · View at Scopus
  5. X. Sun, P. Gu, M. Li, X. Liu, D. Wang, and J. Zhang, “Tunable spatial demultiplexer based on the Fabry-Perot filter,” Optics Express, vol. 14, pp. 8470–8475, 2006. View at Google Scholar
  6. H. Takahashi, S. Suzuki, K. Kato, and I. Nishi, “Arrayed-waveguide grating for wavelength division multi/demultiplexer with nanometre resolution,” Electronics Letters, vol. 26, no. 2, pp. 87–88, 1990. View at Google Scholar · View at Scopus
  7. M. Gerken and D. A. B. Miller, “Wavelength demultiplexer using the spatial dispersion of multilayer thin-film structures,” IEEE Photonics Technology Letters, vol. 15, no. 8, pp. 1097–1099, 2003. View at Publisher · View at Google Scholar · View at Scopus
  8. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Physical Review Letters, vol. 58, no. 20, pp. 2059–2062, 1987. View at Publisher · View at Google Scholar · View at Scopus
  9. S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Physical Review Letters, vol. 58, no. 23, pp. 2486–2489, 1987. View at Publisher · View at Google Scholar · View at Scopus
  10. S. J. McNab, N. Moll, and Y. A. Vlasov, “Ultra-low loss photonic integrated circuit with membrane-type photonic crystal waveguides,” Optics Express, vol. 11, no. 22, pp. 2927–2939, 2003. View at Google Scholar · View at Scopus
  11. K. Sakoda, Optical Properties of Photonic Crystals, Springer, Berlin, Germany, 2001.
  12. F. Mehdizadeh, H. Alipour-Banaei, and Z. Daie-Kuzekanani, “All optical multi reflection structure based on one dimensional photonic crystals for WDM communication systems,” Optoelectronics and Advanced Materials-Rapid Communications, vol. 6, pp. 527–531, 2012. View at Google Scholar
  13. H. Alipour-Banaei and F. Mehdizadeh, “A proposal for anti-uvb filter based on one-dimensional photonic crystal structure,” Digest Journal of Nanomaterials and Biostructures, vol. 7, pp. 361–367, 2012. View at Google Scholar
  14. C. J. Wu and Z. H. Wang, “Properties of defect modes in one-dimensional photonic crystals,” Progress in Electromagnetics Research, vol. 103, pp. 169–184, 2010. View at Google Scholar
  15. F. Qiao, C. Zhang, J. Wan, and J. Zi, “Photonic quantum-well structures: multiple channeled filtering phenomena,” Applied Physics Letters, vol. 77, pp. 3698–3701, 2000. View at Google Scholar
  16. W. H. Lin, C. J. Wu, T. J. Yang, and S. J. Chang, “Terahertz multichanneled filter in a superconducting photonic crystal,” Optics Express, vol. 18, no. 26, pp. 27155–27166, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. D. Shechtman, I. Blech, D. Gratias, and J. W. Cahn, “Metallic phase with long-range orientational order and no translational symmetry,” Physical Review Letters, vol. 53, no. 20, pp. 1951–1953, 1984. View at Publisher · View at Google Scholar · View at Scopus
  18. W. J. Hsueh, S. J. Wun, Z. J. Lin, and Y. H. Cheng, “Features of the perfect transmission in Thue-Morse dielectric multilayers,” Journal of the Optical Society of America B, vol. 28, pp. 2584–2591, 2011. View at Google Scholar
  19. N. Liu, “Propagation of light waves in Thue-Morse dielectric multilayers,” Physical Review B, vol. 55, pp. 3543–3547, 1997. View at Google Scholar
  20. V. Agarwal, J. A. Soto-Urueta, D. Becerra, and M. E. Mora-Ramos, “Light propagation in polytype Thue-Morse structures made of porous silicon,” Photonics and Nanostructures, vol. 3, no. 2-3, pp. 155–161, 2005. View at Publisher · View at Google Scholar · View at Scopus
  21. V. V. Grigoriev and F. Biancalana, “Bistability and stationary gap solitons in quasiperiodic photonic crystals based on Thue-Morse sequence,” Photonics and Nanostructures, vol. 8, no. 4, pp. 285–290, 2010. View at Publisher · View at Google Scholar · View at Scopus
  22. G. Zhang, X. Yang, Y. Li, and H. Song, “Optical transmission through multi-component generalized ThueMorse superlattices,” Physica B, vol. 405, no. 17, pp. 3605–3610, 2010. View at Publisher · View at Google Scholar · View at Scopus
  23. X. H. Deng, J. R. Yuan, W. Q. Hong, and H. Ouyang, “Tunable filters based on Thue-Morse quasicrystals composed of single-negative materials,” Physics Procedia, vol. 22, pp. 360–365, 2011. View at Google Scholar
  24. O. Y. Hong and X. H. Deng, “Direction-independent band gaps extension based on Thue-Morse photonic heterostructures containing negative-index materials,” Materials Science Forum, vol. 675, pp. 1077–1080, 2011. View at Publisher · View at Google Scholar · View at Scopus
  25. S. Zirak-Gharamaleki, “Narrowband optical filter design for DWDM communication applications based on Generalized Aperiodic Thue-Morse structures,” Optics Communications, vol. 284, no. 2, pp. 579–584, 2011. View at Publisher · View at Google Scholar · View at Scopus
  26. M. S. Vasconcelos and E. L. Albuquerque, “Transmission fingerprints in quasiperiodic dielectric multilayers,” Physical Review B, vol. 59, no. 17, pp. 11128–11131, 1999. View at Google Scholar · View at Scopus
  27. L. Dal Negro, M. Stolfi, Y. Yi et al., “Photon band gap properties and omnidirectional reflectance in Si/SiO2 Thue-Morse quasicrystals,” Applied Physics Letters, vol. 84, pp. 5186–5188, 2004. View at Google Scholar
  28. X. Jiang, Y. Zhang, S. Feng, K. C. Huang, Y. Yi, and J. D. Joannopoulos, “Photonic band gaps and localization in the Thue-Morse structures,” Applied Physics Letters, vol. 86, Article ID 201110, 3 pages, 2005. View at Google Scholar
  29. L. Dal Negro, J. H. Yi, V. Nguyen, Y. Yi, J. Michel, and L. C. Kimerling, “Spectrally enhanced light emission from aperiodic photonic structures,” Applied Physics Letters, vol. 86, Article ID 261905, 3 pages, 2005. View at Google Scholar