Table of Contents Author Guidelines Submit a Manuscript
Advances in Orthopedics
Volume 2012, Article ID 151348, 4 pages
Research Article

The Effect of an Open Carpal Tunnel Release on Thumb CMC Biomechanics

Department of Orthopaedics and Rehabilitation, Orthopaedics and Sports Medicine Institute, University of Florida, Gainesville, FL 32608, USA

Received 19 April 2012; Revised 23 October 2012; Accepted 24 October 2012

Academic Editor: Allen L. Carl

Copyright © 2012 Marc A. Tanner et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Purpose. We have observed worsening thumb pain following carpal tunnel release (CTR) in some patients. Our purpose was to determine the effect of open CTR on thumb carpometacarpal (CMC) biomechanics. Methods. Five fresh-frozen cadaver arms with intact soft tissues were used. Each specimen was secured to a jig which fixed the forearm at 45° supination, and the wrist at 20° dorsiflexion, with thumb pointing up. The thumb was axially loaded with a force of 130 N. We measured 3D translation and rotation of the trapezium, radius, and first metacarpal, before and after open CTR. Motion between radius and first metacarpal, radius and trapezium, and first metacarpal and trapezium during loading was calculated using rigid body mechanics. Overall stiffness of each specimen was determined. Results. Total construct stiffness following CTR was reduced in all specimens but not significantly. No significant changes were found in adduction, pronation, or dorsiflexion of the trapezium with respect to radius after open CTR. Motion between radius and first metacarpal, between radius and trapezium, or between first metacarpal and trapezium after open CTR was not decreased significantly. Conclusion. From this data, we cannot determine if releasing the transverse carpal ligament alters kinematics of the CMC joint.