Table of Contents Author Guidelines Submit a Manuscript
Advances in Orthopedics
Volume 2013, Article ID 637362, 7 pages
http://dx.doi.org/10.1155/2013/637362
Clinical Study

The Interspinous Spacer: A New Posterior Dynamic Stabilization Concept for Prevention of Adjacent Segment Disease

Department of Neurosurgery, Saint George Hospital University Medical Center and Balamand University, Youssef Sursock Street, Rmeil, Beirut 11 00 2807, P.O. Box 166378, Lebanon

Received 19 February 2013; Accepted 27 March 2013

Academic Editor: Mehdi Sasani

Copyright © 2013 Antoine Nachanakian et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. S. Chen, C. K. Cheng, C. L. Liu, and W. H. Lo, “Stress analysis of the disc adjacent to interbody fusion in lumbar spine,” Medical Engineering and Physics, vol. 23, no. 7, pp. 483–491, 2001. View at Google Scholar · View at Scopus
  2. M. Kanayama, T. Hashimoto, K. Shigenobu et al., “Adjacent-segment morbidity after Graf ligamentoplasty compared with posterolateral lumbar fusion,” Journal of Neurosurgery, vol. 95, no. 1, pp. 5–10, 2001. View at Google Scholar · View at Scopus
  3. S. D. Christie, J. K. Song, and R. G. Fessler, “Dynamic interspinous process technology,” Spine, vol. 30, no. 16, pp. S73–S78, 2005. View at Google Scholar · View at Scopus
  4. D. Adelt, J. Samani, W.-K. Kim et al., “Coflex Interspinous Stabilisation: clinical and Radiographic results from an international multicenter retrospective study,” Paradigm Spine Journal, no. 1, pp. 1–4, 2007. View at Google Scholar
  5. D. L. Kaech, C. Fernandez, and P. Haninec, “Preliminary experience with the interspinous U device,” Rachis, vol. 13, pp. 303–304, 2001. View at Google Scholar
  6. D. L. Kaech, C. Fernandez, D. Lombardi-Weber et al., “The interspinous U: a new restabilization device for the lumbar spine,” Spinal Restabilization Procedures, vol. 30, pp. 355–362, 2000. View at Google Scholar
  7. D. L. Kaech and J. R. Jinkins, “The interspinous “U”: a new restabilization device for the lumbar spine Spinal Restabilization Procedures,” Elsevier Science B.V., pp. 355–362, 2002. View at Google Scholar
  8. C. Bowers, A. Amini, A. T. Dailey, and M. H. Schmidt, “Dynamic interspinous process stabilization: review of complications associated with the X-Stop device,” Neurosurgical Focus, vol. 28, no. 6, p. E8, 2010. View at Google Scholar · View at Scopus
  9. D. K. Resnick, T. F. Choudhri, A. T. Dailey et al., “Guidelines for the performance of fusion procedures for degenerative disease of the lumbar spine. Part 5: correlation between radiographic and functional outcome,” Journal of Neurosurgery. Spine, vol. 2, no. 6, pp. 658–661, 2005. View at Google Scholar · View at Scopus
  10. M. N. Kumar, A. Baklanov, and D. Chopin, “Correlation between sagittal plane changes and adjacent segment degeneration following lumbar spine fusion,” European Spine Journal, vol. 10, no. 4, pp. 314–319, 2001. View at Publisher · View at Google Scholar · View at Scopus
  11. J. S. Mehta, S. Kochhar, and I. J. Harding, “A slip above a slip: retrolisthesis of the motion segment above a spondylolytic spondylolysthesis,” European Spine Journal, vol. 21, no. 11, pp. 2128–2133, 2012. View at Publisher · View at Google Scholar
  12. F. Pellisé, A. Hernández, X. Vidal, J. Minguell, C. Martínez, and C. Villanueva, “Radiologic assessment of all unfused lumbar segments 7.5 years after instrumented posterior spinal fusion,” Spine, vol. 32, no. 5, pp. 574–579, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. A. Nachanakian, A. El Helou, and M. Alaywan, Posterior Dynamic Stabilization: The Interspinous spacer, Low Back Pain Pathogenesis and Treatment, Edited by Y. Sakai, InTech, 2012.
  14. S.-W. Yu, C.-Y. Yen, C.-H. Wu, F.-C. Kao, Y.-H. Kao, and Y.-K. Tu, “Radiographic and clinical results of posterior dynamic stabilization for the treatment of multisegment degenerative disc disease with a minimum follow-up of 3 years,” Archives of Orthopaedic and Trauma Surgery, vol. 132, pp. 583–589, 2012. View at Google Scholar
  15. T. Cansever, E. Civelek, S. Kabatas, C. Yılmaz, H. Caner, and M. N. Altinörs, “Dysfunctional segmental motion treated with dynamic stabilization in the lumbar spine,” World Neurosurgery, vol. 75, no. 5-6, pp. 743–749, 2011. View at Publisher · View at Google Scholar
  16. F. Heuer, H. Schmidt, W. Käfer, N. Graf, and H.-J. Wilke, “Posterior motion preserving implants evaluated by means of intervertebral disc bulging and annular fiber strains,” Clinical Biomechanics, vol. 27, pp. 218–225, 2012. View at Google Scholar
  17. K. E. Swanson, D. P. Lindsey, K. Y. Hsu, J. F. Zucherman, and S. A. Yerby, “The effects of an interspinous implant on intervertebral disc pressures,” Spine, vol. 28, no. 1, pp. 26–32, 2003. View at Publisher · View at Google Scholar · View at Scopus
  18. Y. H. Jia and P. F. Sun, “Preliminary evaluation of posterior dynamic lumbar stabilization in lumbar degenerative disease in Chinese patients,” Chinese Medical Journal, vol. 125, no. 2, pp. 253–256, 2012. View at Google Scholar
  19. W. Schmoelz, S. Erhart, S. Unger, and C. Alexander, “Disch: biomechanical evaluation of a posterior non-fusion instrumentation of the lumbar spine,” European Spine Journal, vol. 21, pp. 939–945, 2012. View at Google Scholar
  20. B. Cakir, B. Ulmar, H. Koepp, K. Huch, W. Puhl, and M. Richter, “Posterior dynamic stabiliziation as on alternative for instrumented fusion in the treatment of degenerative lumbar instability with spinal stenosis,” Zeitschrift fur Orthopadie und Ihre Grenzgebiete, vol. 141, no. 4, pp. 418–424, 2003. View at Publisher · View at Google Scholar · View at Scopus