Table of Contents Author Guidelines Submit a Manuscript
Advances in Orthopedics
Volume 2013, Article ID 874090, 9 pages
http://dx.doi.org/10.1155/2013/874090
Clinical Study

Posterior Transpedicular Dynamic Stabilization versus Total Disc Replacement in the Treatment of Lumbar Painful Degenerative Disc Disease: A Comparison of Clinical Results

1Neurosurgery Department, American Hospital, 34365 Istanbul, Turkey
2Neurosurgery Department, Koc University School of Medicine, 34450 Istanbul, Turkey
3Physical Therapy and Rehabilitation Department, American Hospital, 34365 Istanbul, Turkey
4Neurosurgery Department, Mengücek Gazi Training and Research Hospital,School of Medicine, Erzincan University, 2400 Erzincan, Turkey
5Radiology Department, Sisli Etfal Hospital, 34360 Istanbul, Turkey

Received 19 October 2012; Accepted 28 November 2012

Academic Editor: Deniz Erbulut

Copyright © 2013 Tunc Oktenoglu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. N. Bogduk, “The innervation of the lumbar spine,” Spine, vol. 8, no. 3, pp. 286–293, 1983. View at Google Scholar · View at Scopus
  2. W. H. Kirkaldy-Willis and H. F. Farfan, “Instability of the lumbar spine,” Clinical Orthopaedics and Related Research, vol. 165, pp. 110–123, 1982. View at Google Scholar · View at Scopus
  3. F. P. Morgan and T. King, “Primary instability of lumbar vertebrae as a common cause of low back pain,” Journal of Bone and Joint Surgery (British Volume), vol. 39, no. 1, pp. 6–22, 1957. View at Google Scholar
  4. J. MALINSKY, “The ontogenetic development of nerve terminations in the intervertebral discs of man,” Acta Anatomica, vol. 38, pp. 96–113, 1959. View at Google Scholar · View at Scopus
  5. M. C. Battié, T. Videman, and E. Parent, “Lumbar disc degeneration: epidemiology and genetic influences,” Spine, vol. 29, no. 23, pp. 2679–2690, 2004. View at Publisher · View at Google Scholar · View at Scopus
  6. A. Ong, J. Anderson, and J. Roche, “A pilot study of the prevalence of lumbar disc degeneration in elite athletes with lower back pain at the Sydney 2000 Olympic Games,” British Journal of Sports Medicine, vol. 37, no. 3, pp. 263–266, 2003. View at Google Scholar · View at Scopus
  7. T. Videman, S. Sarna, M. C. Battie et al., “The long-term effects of physical loading and exercise lifestyles on back- related symptoms, disability, and spinal pathology among men,” Spine, vol. 20, no. 6, pp. 699–709, 1995. View at Google Scholar · View at Scopus
  8. C. J. Wallach, L. G. Gilbertson, and J. D. Kang, “Gene therapy applications for intervertebral disc degeneration,” Spine, vol. 28, no. 15, supplement, pp. S93–S98, 2003. View at Google Scholar · View at Scopus
  9. H. A. Horner and J. P. G. Urban, “2001 Volvo award winner in basic science studies: effect of nutrient supply on the viability of cells from the nucleus pulposus of the intervertebral disc,” Spine, vol. 26, no. 23, pp. 2543–2549, 2001. View at Publisher · View at Google Scholar · View at Scopus
  10. L. Ala-Kokko, “Genetic risk factors for lumbar disc disease,” Annals of Medicine, vol. 34, no. 1, pp. 42–47, 2002. View at Publisher · View at Google Scholar · View at Scopus
  11. M. A. Edgar and J. A. Ghadially, “Innervation of the lumbar spine,” Clinical Orthopaedics and Related Research, vol. 115, pp. 35–41, 1976. View at Google Scholar · View at Scopus
  12. M. Grönblad, J. Virri, S. Rönkkö et al., “A controlled biochemical and immunohistochemical study of human synovial-type (group II) phospholipase A2 and inflammatory cells in macroscopically normal, degenerated, and herniated human lumbar disc tissues,” Spine, vol. 21, no. 22, pp. 2531–2538, 1996. View at Publisher · View at Google Scholar · View at Scopus
  13. H. V. Crock, “Internal disc disruption. A challenge to disc prolapse fifty years on,” Spine, vol. 11, no. 6, pp. 650–653, 1986. View at Google Scholar · View at Scopus
  14. J. W. Frymoyer, “Segmental instability,” in The Adult Spine, J. W. Frymoyer, Ed., pp. 1873–1891, Raven Press, New York, NY, USA, 1991. View at Google Scholar
  15. J. W. Frymoyer and D. K. Selby, “Segmental instability: rationale for treatment,” Spine, vol. 10, no. 3, pp. 280–286, 1985. View at Google Scholar · View at Scopus
  16. E. C. Benzel, “Stability and instability of the spine,” in Biomechanics of Spine Stabilization, E. C. Benzel, Ed., pp. 29–43, Thime, New York, NY, USA, 2001. View at Google Scholar
  17. S. J. Suratwala, M. R. Pinto, T. J. Gilbert, R. B. Winter, and J. M. Wroblewski, “Functional and radiological outcomes of 360° fusion of three or more motion levels in the lumbar spine for degenerative disc disease,” Spine, vol. 34, no. 10, pp. E351–E358, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. A. A. Faundez, J. D. Schwender, Y. Safriel et al., “Clinical and radiological outcome of anterior-posterior fusion versus transforaminal lumbar interbody fusion for symptomatic disc degeneration: a retrospective comparative study of 133 patients,” European Spine Journal, vol. 18, no. 2, pp. 203–211, 2009. View at Publisher · View at Google Scholar · View at Scopus
  19. B. I. Martin, S. K. Mirza, B. A. Comstock, D. T. Gray, W. Kreuter, and R. A. Deyo, “Reoperation rates following lumbar spine surgery and the influence of spinal fusion procedures,” Spine, vol. 32, no. 3, pp. 382–387, 2007. View at Publisher · View at Google Scholar · View at Scopus
  20. J. C. Banwart, M. A. Asher, and R. S. Hassanein, “Iliac crest bone graft harvest donor site morbidity: a statistical evaluation,” Spine, vol. 20, no. 9, pp. 1055–1060, 1995. View at Google Scholar · View at Scopus
  21. T. R. Lehmann, K. F. Spratt, and J. E. Tozzi, “Long-term follow-up of lower lumbar fusion patients,” Spine, vol. 12, no. 2, pp. 97–104, 1987. View at Google Scholar · View at Scopus
  22. P. Fritzell, O. Hägg, and A. Nordwall, “Complications in lumbar fusion surgery for chronic low back pain: comparison of three surgical techniques used in a prospective randomized study. A report from the Swedish lumbar spine study group,” European Spine Journal, vol. 12, no. 2, pp. 178–189, 2003. View at Google Scholar · View at Scopus
  23. T. Kaner, M. Sasani, T. Oktenoglu, and A. F. Ozer, “Dynamic stabilization of the spine: a new classification system,” Turkish Neurosurgery, vol. 20, no. 2, pp. 205–215, 2010. View at Google Scholar · View at Scopus
  24. T. Kaner, M. Sasani, T. Oktenoglu, M. Cosar, and A. F. Ozer, “Utilizing dynamic rods with dynamic screws in the surgical treatment of chronic instability: a prospective clinical study,” Turkish Neurosurgery, vol. 19, no. 4, pp. 319–326, 2009. View at Google Scholar · View at Scopus
  25. T. Kaner, S. Dalbayrak, T. Oktenoglu, M. Sasani, A. L. Aydin, and F. O. Ozer, “Comparison of posterior dynamic and posterior rigid transpedicular stabilization with fusion to treat degenerative spondylolisthesis,” Orthopedics, vol. 33, no. 5, 2010. View at Publisher · View at Google Scholar · View at Scopus
  26. T. Kaner, M. Sasani, T. Oktenoglu et al., “Minimum two-year follow-up of cases with recurrent disc herniation treated with microdiscectomy and posterior dynamic transpedicular stabilisation,” Open Orthopaedics, vol. 4, pp. 120–125, 2010. View at Publisher · View at Google Scholar
  27. T. Kaner, M. Sasani, T. Oktenoglu, M. Cosar, and A. F. Ozer, “Clinical outcomes after posterior dynamic transpedicular stabilization with limited lumbar discectomy: carragee classification system for lumbar disc herniations,” SAS Journal, vol. 4, no. 3, pp. 92–97, 2010. View at Publisher · View at Google Scholar · View at Scopus
  28. A. F. Ozer, N. R. Crawford, M. Sasani et al., “Dynamic lumbar pedicle screw-rod stabilization: two year follow-up and comparison with fusion,” Open Orthopaedics, vol. 4, pp. 137–141, 2010. View at Publisher · View at Google Scholar
  29. M. Sasani, T. Öktenoǧlu, K. Tuncay, N. Canbulat, S. Carilli, and F. A. Özer, “Total disc replacement in the treatment of lumbar discogenic pain with disc herniation: a prospective clinical study,” Turkish Neurosurgery, vol. 19, no. 2, pp. 127–134, 2009. View at Google Scholar · View at Scopus
  30. M. Putzier, S. V. Schneider, J. F. Funk, S. W. Tohtz, and C. Perka, “The surgical treatment of the lumbar disc prolapse: nucleotomy with additional transpedicular dynamic stabilization versus nucleotomy alone,” Spine, vol. 30, no. 5, pp. E109–E114, 2005. View at Google Scholar · View at Scopus
  31. A. Von Strempel, D. Moosmann, C. Stoss et al., “Stabilization of the degenerated lumbar spine in the nonfusion technique with cosmic posterior dynamic system,” The Wall Street Journal, vol. 1, pp. 40–47, 2006. View at Google Scholar
  32. J. C. Le Huec, H. Mathews, Y. Basso et al., “Clinical results of Maverick lumbar total disc replacement: two-year prospective follow-up,” Orthopedic Clinics of North America, vol. 36, no. 3, pp. 315–322, 2005. View at Publisher · View at Google Scholar · View at Scopus
  33. M. Kanayama, T. Hashimoto, K. Shigenobu et al., “Adjacent-segment morbidity after Graf ligamentoplasty compared with posterolateral lumbar fusion,” Journal of Neurosurgery, vol. 95, no. 1, pp. 5–10, 2001. View at Google Scholar · View at Scopus
  34. T. M. Stoll, G. Dubois, and O. Schwarzenbach, “The dynamic neutralization system for the spine: a multi-center study of a novel non-fusion system,” European Spine Journal, vol. 11, no. 2, supplement, pp. S170–S178, 2002. View at Google Scholar · View at Scopus
  35. T. Oktenoglu, A. F. Ozer, M. Sasani et al., “Posterior dynamic stabilization in the treatment of lumbar degenerative disc disease: 2-year follow-up,” Minimally Invasive Neurosurgery, vol. 53, no. 3, pp. 112–116, 2010. View at Publisher · View at Google Scholar · View at Scopus
  36. S. Carilli, T. Oktenoglu, and A. F. Ozer, “Open-window laparotomy during a transperitoneal approach to the lower lumbar vertebrae: new method for reducing complications,” Minimally Invasive Neurosurgery, vol. 49, no. 4, pp. 227–229, 2006. View at Publisher · View at Google Scholar · View at Scopus
  37. K. Büttner-Janz, K. Schelnack, and Zippel H, “An alternative teratment strategy for lumbar disc damage using the SB Charité modular disc prosthesis,” Zeitschrift fur Orthopadie und Ihre Grenzgebiete, vol. 125, no. 1, pp. 1–6, 1987. View at Google Scholar
  38. T. Marnay, ProDisc Retrospective Clinical Study: 7–11 Year Follow Up, Spine Solutions, New York, NY, USA, 2002.
  39. T. J. Errico, “Lumbar disc arthroplasty,” Clinical Orthopaedics and Related Research, no. 435, pp. 106–117, 2005. View at Publisher · View at Google Scholar · View at Scopus
  40. S. Blumenthal, P. C. McAfee, R. D. Guyer et al., “A prospective, randomized, multicenter food and drug administration investigational device exemptions study of lumbar total disc replacement with the CHARITÉ artificial disc versus lumbar fusion—part I: evaluation of clinical outcomes,” Spine, vol. 30, no. 14, pp. 1565–1575, 2005. View at Publisher · View at Google Scholar · View at Scopus
  41. J. Zigler, R. Delamarter, J. M. Spivak et al., “Results of the prospective, randomized, multicenter food and drug administration investigational device exemption study of the ProDisc-L total disc replacement versus circumferential fusion for the treatment of 1-level degenerative disc disease,” Spine, vol. 32, no. 11, pp. 1155–1162, 2007. View at Publisher · View at Google Scholar
  42. S. H. Hochschuler, D. D. Ohnmeiss, R. D. Guyer, and S. L. Blumenthal, “Artificial disc: preliminary results of a prospective study in the United States,” European Spine Journal, vol. 11, no. 2, supplement, pp. S106–S110, 2002. View at Google Scholar · View at Scopus
  43. H. Mayer, K. Wiechert, A. Korge, and I. Qose, “Minimally invasive total disc replacement: surgical technique and preliminary clinical results,” European Spine Journal, vol. 11, no. 2, supplement, pp. S124–S130, 2002. View at Google Scholar · View at Scopus
  44. R. Bertagnoli and S. Kumar, “Indications for full prosthetic disc arthroplasty: a correlation of clinical outcome against a variety of indications,” European Spine Journal, vol. 11, no. 2, supplement, pp. S131–S136, 2002. View at Google Scholar · View at Scopus
  45. P. C. McAfee, B. Cunningham, G. Holsapple et al., “A prospective, randomized, multicenter food and drug administration investigational device exemption study of lumbar total disc replacement with the CHARITÉtrade; artificial disc versus lumbar fusion—part II: evaluation of radiographic outcomes and correlation of surgical technique accuracy with clinical outcomes,” Spine, vol. 30, no. 14, pp. 1576–1583, 2005. View at Publisher · View at Google Scholar · View at Scopus
  46. T. David, “Charité artifi cial disc long term results of one level (10 year),” Spine, vol. 32, no. 6, pp. 661–666, 2007. View at Publisher · View at Google Scholar
  47. F. H. Geisler, S. L. Blumenthal, R. D. Guyer et al., “Neurological complications of lumbar artificial disc replacement and comparison of clinical results with those related to lumbar arthrodesis in the literature: results of a multicenter, prospective, randomized investigational device exemption study of Charité intervertebral disc. Invited submission from the Joint section meeting on disorders of the spine and peripheral nerves, March 2004,” Journal of Neurosurgery: Spine, vol. 1, no. 2, pp. 143–154, 2004. View at Google Scholar · View at Scopus
  48. C. Rosen, P. D. Kiester, and T. Q. Lee, “Lumbar disk replacement failures: review of 29 patients and rationale for revision,” Orthopedics, vol. 32, no. 8, article 562, 2009. View at Publisher · View at Google Scholar · View at Scopus
  49. A. van Ooij, F. Cumhur Oner, and A. J. Verbout, “Complications of artificial disc replacement: a report of 27 patients with the SB Charité disc,” Journal of Spinal Disorders and Techniques, vol. 16, no. 4, pp. 369–383, 2003. View at Google Scholar · View at Scopus
  50. C. J. Siepe, H. M. Mayer, K. Wiechert, and A. Korge, “Clinical results of total lumbar disc replacement with ProDisc II: three-year results for different indications,” Spine, vol. 31, no. 17, pp. 1923–1932, 2006. View at Publisher · View at Google Scholar · View at Scopus
  51. M. Putzier, J. F. Funk, S. V. Schneider et al., “Charité total disc replacement—clinical and radiographical results after an average follow-up of 17 years,” European Spine Journal, vol. 15, no. 2, pp. 183–195, 2006. View at Publisher · View at Google Scholar · View at Scopus
  52. R. D. Guyer, P. C. McAfee, R. J. Banco et al., “Prospective, randomized, multicenter food and drug administration investigational device exemption study of lumbar total disc replacement with the CHARITÉ artificial disc versus lumbar fusion: five-year follow-up,” Spine Journal, vol. 9, no. 5, pp. 374–386, 2009. View at Publisher · View at Google Scholar · View at Scopus
  53. K. D. van den Eerenbeemt, R. W. Ostelo, B. J. van Royen, W. C. Peul, and M. W. van Tulder, “Total disc replacement surgery for symptomatic degenerative lumbar disc disease: a systematic review of the literature,” European Spine Journal, vol. 19, no. 8, pp. 1262–1280, 2010. View at Publisher · View at Google Scholar · View at Scopus
  54. P. Park, H. J. Garton, V. C. Gala, J. T. Hoff, and J. E. McGillicuddy, “Adjacent segment disease after lumbar or lumbosacral fusion: review of the literature,” Spine, vol. 29, no. 17, pp. 1938–1944, 2004. View at Publisher · View at Google Scholar · View at Scopus
  55. V. K. Goel, T. H. Lim, J. Gwon et al., “Effects of rigidity of an internal fixation device: a comprehensive biomechanical investigation,” Spine, vol. 16, no. 3, pp. S155–S161, 1991. View at Google Scholar · View at Scopus
  56. S. M. Juratli, G. M. Franklin, S. K. Mirza, T. M. Wickizer, and D. Fulton-Kehoe, “Lumbar fusion outcomes in Washington State workers' compensation,” Spine, vol. 31, no. 23, pp. 2715–2723, 2006. View at Publisher · View at Google Scholar · View at Scopus
  57. A. Waguespack, J. Schofferman, P. Slosar, and J. Reynolds, “Etiology of long-term failures of lumbar spine surgery,” Pain Medicine, vol. 3, no. 1, pp. 18–22, 2002. View at Publisher · View at Google Scholar · View at Scopus
  58. P. C. McAfee, I. D. Farey, C. E. Sutterlin, K. R. Gurr, K. E. Warden, and B. W. Cunningham, “The effect of spinal implant rigidity on vertebral bone density: a canine model,” Spine, vol. 16, no. 6, supplement, pp. S190–S197, 1991. View at Google Scholar · View at Scopus
  59. N. Boos and J. K. Webb, “Pedicle screw fixation in spinal disorders: a European view,” European Spine Journal, vol. 6, no. 1, pp. 2–18, 1997. View at Publisher · View at Google Scholar · View at Scopus
  60. H. Bozkuş, M. Şenoğlu, S. Baek et al., “Dynamic lumbar pedicle screw-rod stabilization: in vitro biomechanical comparison with standard rigid pedicle screw-rod stabilization—laboratory investigation,” Journal of Neurosurgery: Spine, vol. 12, no. 2, pp. 183–189, 2010. View at Publisher · View at Google Scholar · View at Scopus
  61. W. Schmoelz, U. Onder, A. Martin, and A. Von Strempel, “Non-fusion instrumentation of the lumbar spine with a hinged pedicle screw rod system: an in vitro experiment,” European Spine Journal, vol. 18, no. 10, pp. 1478–1485, 2009. View at Publisher · View at Google Scholar · View at Scopus
  62. V. K. Goel, R. J. Konz, H. T. Chang et al., “Hinged-dynamic posterior device permits greater loads on the graft and similar stability as compared with its equivalent rigid device: a three-dimensional finite element assessment,” Journal of Prosthetics and Orthotics, vol. 13, no. 1, pp. 17–20, 2001. View at Google Scholar · View at Scopus
  63. B. Cakir, M. Richter, K. Huch, W. Puhl, and R. Schmidt, “Dynamic stabilization of the lumbar spine,” Orthopedics, vol. 29, no. 8, pp. 716–722, 2006. View at Google Scholar · View at Scopus
  64. D. Grob, A. Benini, A. Junge, and A. F. Mannion, “Clinical experience with the dynesys semirigid fixation system for the lumbar spine: surgical and patient-oriented outcome in 50 cases after an average of 2 years,” Spine, vol. 30, no. 3, pp. 324–331, 2005. View at Publisher · View at Google Scholar · View at Scopus
  65. P. Korovessis, Z. Papazisis, G. Koureas, and E. Lambiris, “Rigid, semirigid versus dynamic instrumentation for degenerative lumbar spinal stenosis: a correlative radiological and clinical analysis of short-term results,” Spine, vol. 29, no. 7, pp. 735–742, 2004. View at Publisher · View at Google Scholar · View at Scopus
  66. C. C. Würgler-Hauri, A. Kalbarczyk, M. Wiesli, H. Landolt, and J. Fandino, “Dynamic neutralization of the lumbar spine after microsurgical decompression in acquired lumbar spinal stenosis and segmental instability,” Spine, vol. 33, no. 3, pp. E66–E72, 2008. View at Publisher · View at Google Scholar · View at Scopus
  67. R. C. Huang, F. P. Girardi, M. R. Lim, and F. P. Cammisa, “Advantages and disadvantages of nonfusion technology in spine surgery,” Orthopedic Clinics of North America, vol. 36, no. 3, pp. 263–269, 2005. View at Publisher · View at Google Scholar · View at Scopus
  68. J. S. Harrop, J. A. Youssef, M. Maltenfort et al., “Lumbar adjacent segment degeneration and disease after arthrodesis and total disc arthroplasty,” Spine, vol. 33, no. 15, pp. 1701–1707, 2008. View at Publisher · View at Google Scholar · View at Scopus