Table of Contents
Advances in Optical Technologies
Volume 2008, Article ID 267867, 8 pages
http://dx.doi.org/10.1155/2008/267867
Research Article

Optical Clearing of Cranial Bone

1Research-Educational Institute of Optics and Biophotonics, Saratov State University, Astrakhanskaya Street, 83, Saratov 410012, Russia
2Laser Diagnostics of Technical and Living Systems Lab, Institute of Precise Mechanics and Control of RAS, 24 Rabochaya Street, Saratov 410028, Russia

Received 20 February 2008; Accepted 2 April 2008

Academic Editor: Stoyan Tanev

Copyright © 2008 Elina A. Genina et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. D. Frostig, Ed., In Vivo Optical Imaging of Brain Function, CRC Press, Boca Raton, Fla, USA, 2002.
  2. E. Gratton, V. Toronov, U. Wolf, M. Wolf, and A. Webb, “Measurement of brain activity by near-infrared light,” Journal of Biomedical Optics, vol. 10, no. 1, Article ID 011008, 13 pages, 2005. View at Publisher · View at Google Scholar
  3. S. Krishnamurthy, S. K. Powers, P. Witmer, and T. Brown, “Optimal light dose for interstitial photodynamic therapy in treatment for malignant brain tumors,” Lasers in Surgery and Medicine, vol. 27, no. 3, pp. 224–234, 2000. View at Publisher · View at Google Scholar
  4. V. X. D. Yang, P. J. Muller, P. Herman, and B. C. Wilson, “A multispectral fluorescence imaging system: design and initial clinical tests in intra-operative photofrin-photodynamic therapy of brain tumors,” Lasers in Surgery and Medicine, vol. 32, no. 3, pp. 224–232, 2003. View at Publisher · View at Google Scholar
  5. V. V. Tuchin, Tissue Optics: Light Scattering Methods and Instruments for Medical Diagnosis, SPIE Press Monograph Vol. PM166, SPIE Press, Bellingham, Wash, USA, 2nd edition, 2007.
  6. W. A. Kalender, “X-ray computed tomography,” Physics in Medicine and Biology, vol. 51, no. 13, pp. R29–R43, 2006. View at Publisher · View at Google Scholar
  7. Y. Chen, D. R. Tailor, X. Intes, and B. Chance, “Correlation between near-infrared spectroscopy and magnetic resonance imaging of rat brain oxygenation modulation,” Physics in Medicine and Biology, vol. 48, no. 4, pp. 417–427, 2003. View at Publisher · View at Google Scholar
  8. X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nature Biotechnology, vol. 21, no. 7, pp. 803–806, 2003. View at Publisher · View at Google Scholar
  9. D. A. Benaron, S. R. Hintz, A. Villringer et al., “Noninvasive functional imaging of human brain using light,” Journal of Cerebral Blood Flow and Metabolism, vol. 20, no. 3, pp. 469–477, 2000. View at Google Scholar
  10. J. C. Hebden, A. Gibson, T. Austin et al., “Imaging changes in blood volume and oxygenation in the newborn infant brain using three-dimensional optical tomography,” Physics in Medicine and Biology, vol. 49, no. 7, pp. 1117–1130, 2004. View at Publisher · View at Google Scholar
  11. F. Bevilacqua, D. Piguet, P. Marquet, J. D. Gross, B. J. Tromberg, and C. Depeursinge, “In vivo local determination of tissue optical properties: applications to human brain,” Applied Optics, vol. 38, no. 22, pp. 4939–4950, 1999. View at Google Scholar
  12. W.-C. Lin, S. A. Toms, M. Johnson, E. D. Jansen, and A. Mahadevan-Jansen, “In vivo brain tumor demarcation using optical spectroscopy,” Photochemistry and Photobiology, vol. 73, no. 4, pp. 396–402, 2001. View at Publisher · View at Google Scholar
  13. D. A. Boas, “A fundamental limitation of linearized algorithms for diffuse optical tomography,” Optics Express, vol. 1, no. 13, pp. 404–413, 1997. View at Google Scholar
  14. C. L. Smithpeter, A. K. Dunn, A. J. Welch, and R. Richards-Kortum, “Penetration depth limits of in vivo confocal reflectance imaging,” Applied Optics, vol. 37, no. 13, pp. 2749–2754, 1998. View at Google Scholar
  15. V. V. Tuchin, “A clear vision for laser diagnostics (review),” IEEE Journal on Selected Topics in Quantum Electronics, vol. 13, no. 6, pp. 1621–1628, 2007. View at Publisher · View at Google Scholar
  16. R. Cicchi, F. S. Pavone, D. Massi, and D. D. Sampson, “Contrast and depth enhancement in two-photon microscopy of human skin ex vivo by use of optical clearing agents,” Optics Express, vol. 13, no. 7, pp. 2337–2344, 2005. View at Publisher · View at Google Scholar
  17. I. V. Meglinski, A. N. Bashkatov, E. A. Genina, D. Y. Churmakov, and V. V. Tuchin, “The enhancement of confocal images of tissues at bulk optical immersion,” Laser Physics, vol. 13, no. 1, pp. 65–69, 2003. View at Google Scholar
  18. E. D. Jansen, P. M. Pickett, M. A. Mackanos, and J. Virostko, “Effect of optical tissue clearing on spatial resolution and sensitivity of bioluminescence imaging,” Journal of Biomedical Optics, vol. 11, no. 4, Article ID 041119, 7 pages, 2006. View at Publisher · View at Google Scholar
  19. M. G. Ghosn, V. V. Tuchin, and K. V. Larin, “Depth-resolved monitoring of glucose diffusion in tissues by using optical coherence tomography,” Optics Letters, vol. 31, no. 15, pp. 2314–2316, 2006. View at Publisher · View at Google Scholar
  20. I. V. Larina, E. F. Carbajal, V. V. Tuchin, M. E. Dickinson, and K. V. Larin, “Enhanced OCT imaging of embryonic tissue with optical clearing,” Laser Physics Letters, vol. 5, pp. 476–480, 2008. View at Google Scholar
  21. A. Boskey and R. Mendelsohn, “Infrared analysis of bone in health and disease,” Journal of Biomedical Optics, vol. 10, no. 3, Article ID 031102, 9 pages, 2005. View at Publisher · View at Google Scholar
  22. J. W. Ager III, R. K. Nalla, K. L. Breeden, and R. O. Ritchie, “Deep-ultraviolet Raman spectroscopy study of the effect of aging on human cortical bone,” Journal of Biomedical Optics, vol. 10, no. 3, Article ID 034012, 8 pages, 2005. View at Publisher · View at Google Scholar
  23. A. Pifferi, A. Torricelli, P. Taroni et al., “Optical biopsy of bone tissue: a step toward the diagnosis of bone pathologies,” Journal of Biomedical Optics, vol. 9, no. 3, pp. 474–480, 2004. View at Publisher · View at Google Scholar
  24. J. Currey, “‘Osteons’ in biomechanical literature,” Journal of Biomechanics, vol. 15, no. 9, p. 717, 1982. View at Publisher · View at Google Scholar
  25. S. Weiner and H. D. Wagner, “The material bone: structure-mechanical function relations,” Annual Review of Materials Science, vol. 28, no. 1, pp. 271–298, 1998. View at Publisher · View at Google Scholar
  26. A. S. Posner, “Bone mineral and the mineralisation process,” in Bone and Mineral Research, W. A. Peck, Ed., Elsevier, Amsterdam, The Netherlands, 1987. View at Google Scholar
  27. J.-Y. Rho, L. Kuhn-Spearing, and P. Zioupos, “Mechanical properties and the hierarchical structure of bone,” Medical Engineering & Physics, vol. 20, no. 2, pp. 92–102, 1998. View at Publisher · View at Google Scholar
  28. M. A. Fernández-Seara, S. L. Wehrli, and F. W. Wehrli, “Diffusion of exchangeable water in cortical bone studied by nuclear magnetic resonance,” Biophysical Journal, vol. 82, no. 1, pp. 522–529, 2002. View at Google Scholar
  29. E. E. Wilson, A. Awonusi, M. D. Morris, D. H. Kohn, M. M. J. Tecklenburg, and L. W. Beck, “Three structural roles for water in bone observed by solid-state NMR,” Biophysical Journal, vol. 90, no. 10, pp. 3722–3731, 2006. View at Publisher · View at Google Scholar
  30. W. F. Neuman and M. W. Neuman, Skeletal Dynamics the Chemical Dynamics of Bone Mineral, University of Chicago Press, Chicago, Ill, USA, 1958.
  31. F. W. Wehrli and M. A. Fernández-Seara, “Nuclear magnetic resonance studies of bone water,” Annals of Biomedical Engineering, vol. 33, no. 1, pp. 79–86, 2005. View at Publisher · View at Google Scholar
  32. R. F. Robinson, “An electron-microscopy study of the crystalline inorganic component of bone and its relationship to the organic matrix,” Journal of Bone and Joint Surgery, vol. 34-A, no. 2, pp. 389–435, 1952. View at Google Scholar
  33. A. Ascenzi and C. Fabry, “Technique for dissection and measurement of refractive index of osteones,” Journal of Biophysical and Biochemical Cytology, vol. 6, pp. 139–143, 1959. View at Google Scholar
  34. F. A. Duck, Physical Properties of Tissue: A Comprehensive Reference Book, Academic Press, London, UK, 1990.
  35. X.-J. Wang, T. E. Milner, M. C. Chang, and J. S. Nelson, “Group refractive index measurement of dry and hydrated type I collagen films using optical low-coherence reflectometry,” Journal of Biomedical Optics, vol. 1, no. 2, pp. 212–216, 1996. View at Publisher · View at Google Scholar
  36. V. V. Tuchin, Optical Clearing of Tissues and Blood, SPIE Press Monograph Vol. PM154, SPIE Press, Bellingham, Wash, USA, 2005.
  37. S. A. Prahl, M. J. C. van Gemert, and A. J. Welch, “Determining the optical properties of turbid media by using the adding-doubling method,” Applied Optics, vol. 32, no. 4, pp. 559–568, 1993. View at Google Scholar
  38. A. N. Bashkatov, E. A. Genina, V. I. Kochubey, and V. V. Tuchin, “Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm,” Journal of Physics D, vol. 38, no. 15, pp. 2543–2555, 2005. View at Publisher · View at Google Scholar
  39. D. K. Sardar, G.-Y. Swanland, R. M. Yow, R. J. Thomas, and A. T. C. Tsin, “Optical properties of ocular tissues in the near infrared region,” Lasers in Medical Science, vol. 22, no. 1, pp. 46–52, 2007. View at Publisher · View at Google Scholar
  40. S. A. Prahl, “Optical absorption of hemoglobin,” 1999, http://omlc.ogi.edu/spectra/hemoglobin.
  41. N. Ugryumova, S. J. Matcher, and D. P. Attenburrow, “Measurement of bone mineral density via light scattering,” Physics in Medicine and Biology, vol. 49, pp. 469–483, 2004. View at Publisher · View at Google Scholar
  42. M. Firbank, M. Hiraoka, M. Essenpreis, and D. T. Delpy, “Measurement of the optical properties of the skull in the wavelength range 650–950 nm,” Physics in Medicine and Biology, vol. 38, no. 4, pp. 503–510, 1993. View at Publisher · View at Google Scholar
  43. K. F. Palmer and D. Williams, “Optical properties of water in the near infrared,” Journal of the Optical Society of America, vol. 64, no. 8, pp. 1107–1110, 1974. View at Google Scholar
  44. L. Kou, D. Labrie, and P. Chylek, “Refractive indices of water and ice in the 0.65–2.5 μm spectral range,” Applied Optics, vol. 32, no. 19, pp. 3531–3543, 1993. View at Google Scholar
  45. K. A. Martin, “Direct measurement of moisture in skin by NIR spectroscopy,” Journal of the Society of Cosmetic Chemists, vol. 44, pp. 249–261, 1993. View at Google Scholar
  46. A. N. Bashkatov, E. A. Genina, V. I. Kochubey, and V. V. Tuchin, “Optical properties of human cranial bone in the spectral range from 800 to 2000 nm,” in Saratov Fall Meeting 2005: Optical Technologies in Biophysics and Medicine VII, vol. 6163 of Proceedings of SPIE, p. 11, Saratov, Russia, July 2006. View at Publisher · View at Google Scholar
  47. Y. Du, X. H. Hu, M. Caiveau, X. Ma, G. W. Kalmus, and J. Q. Lu, “Optical properties of porcine skin dermis between 900 nm and 1500 nm,” Physics in Medicine and Biology, vol. 46, no. 1, pp. 167–181, 2001. View at Publisher · View at Google Scholar
  48. J.-P. Ritz, A. Roggan, C. Isbert, G. Müller, H. J. Buhr, and C.-T. Germer, “Optical properties of native and coagulated porcine liver tissue between 400 and 2400 nm,” Lasers in Surgery and Medicine, vol. 29, no. 3, pp. 205–212, 2001. View at Publisher · View at Google Scholar
  49. E. A. Genina, A. A. Korobko, A. N. Bashkatov, V. V. Tuchin, I. V. Yaroslavsky, and G. B. Altshuler, “Investigation of skin water loss and glycerol delivery through stratum corneum,” in Saratov Fall Meeting 2006: Optical Technologies in Biophysics and Medicine VIII, vol. 6535 of Proceedings of SPIE, Saratov, Russia, September 2007. View at Publisher · View at Google Scholar
  50. J. Hirshburg, B. Choi, J. S. Nelson, and A. T. Yeh, “Collagen solubility correlates with skin optical clearing,” Journal of Biomedical Optics, vol. 11, no. 4, Article ID 040501, 3 pages, 2006. View at Publisher · View at Google Scholar
  51. J.-P. Ritz, A. Roggan, C. Isbert, G. Müller, H. J. Buhr, and C.-T. Germer, “Optical properties of native and coagulated porcine liver tissue between 400 and 2400 nm,” Lasers in Surgery and Medicine, vol. 29, no. 3, pp. 205–212, 2001. View at Publisher · View at Google Scholar