Table of Contents
Advances in Optical Technologies
Volume 2008 (2008), Article ID 275080, 7 pages
http://dx.doi.org/10.1155/2008/275080
Research Article

A Proposed Method for Thermal Specific Bioimaging and Therapy Technique for Diagnosis and Treatment of Malignant Tumors by Using Magnetic Nanoparticles

Department of Biomedical Engineering, Faculty of Engineering, Tel-Aviv University, Tel-Aviv 69978, Israel

Received 25 February 2008; Accepted 9 April 2008

Academic Editor: Stoyan Tanev

Copyright © 2008 Iddo M. Gescheit et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. F. Bretagnol and L. de Calan, “Surgery treatment of rectal cancer,” Journal de Chirurgie, vol. 143, no. 6, pp. 366–372, 2006. View at Google Scholar
  2. Cancer Facts and Figures, 2006.
  3. L. J. Kleinsmith, D. Kerrigan, J. Kelly, and B. Hollen, “Understanding Cancer and Related Topics Understanding Cancer,” National Cancer Institute, 2007.
  4. D. A. Benaron, “The future of cancer imaging,” Cancer and Metastasis Reviews, vol. 21, no. 1, pp. 45–78, 2002. View at Publisher · View at Google Scholar
  5. M. Ben-David, A. Inberg, I. Gannot, and N. Croitoru, “The effect of scattering on the transmission of infrared radiation through hollow waveguides,” Journal of Optoelectronics and Advanced Materials, vol. 1, no. 3, pp. 23–30, 1999. View at Google Scholar
  6. I. Gannot, M. Ben-David, A. Inberg, and N. Croitoru, “Broadband omnidirectional IR flexible waveguides,” Journal of Optoelectronics and Advanced Materials, vol. 3, no. 4, pp. 933–935, 2001. View at Google Scholar
  7. I. Gannot, M. Ben-David, A. Inberg, N. Croitoru, and R. W. Waynant, “Beam shape analysis of waveguide delivered infrared lasers,” Optical Engineering, vol. 41, no. 1, pp. 244–250, 2002. View at Publisher · View at Google Scholar
  8. N. Croitoru, A. Inberg, M. Ben-David, and I. Gannot, “Broad band and low loss mid-IR flexible hollow waveguides,” Optics Express, vol. 12, no. 7, pp. 1341–1352, 2004. View at Publisher · View at Google Scholar
  9. G. Fibich, A. Hammer, G. Gannot, A. Gandjbakhche, and I. Gannot, “Modeling and simulations of the pharmacokinetics of fluorophore conjugated antibodies in tumor vicinity for the optimization of fluorescence-based optical imaging,” Lasers in Surgery and Medicine, vol. 37, no. 2, pp. 155–160, 2005. View at Publisher · View at Google Scholar
  10. I. Gannot, A. Garashi, G. Gannot, V. Chernomordik, and A. Gandjbakhche, “In vivo quantitative three-dimensional localization of tumor labeled with exogenous specific fluorescence markers,” Applied Optics, vol. 42, no. 16, pp. 3073–3080, 2003. View at Publisher · View at Google Scholar
  11. V. S. Kalambur, B. Han, B. E. Hammer, T. W. Shield, and J. C. Bischof, “In vitro characterization of movement, heating and visualization of magnetic nanoparticles for biomedical applications,” Nanotechnology, vol. 16, no. 8, pp. 1221–1233, 2005. View at Publisher · View at Google Scholar
  12. R. Hergt, W. Andrae, C. G. d'Ambly et al., “Physical limits of hyperthermia using magnetite fine particles,” IEEE Transactions on Magnetics, vol. 34, no. 5, part 2, pp. 3745–3754, 1998. View at Publisher · View at Google Scholar
  13. R. E. Rosensweig, “Heating magnetic fluid with alternating magnetic field,” Journal of Magnetism and Magnetic Materials, vol. 252, no. 1–3, pp. 370–374, 2002. View at Publisher · View at Google Scholar
  14. A. Jordan, P. Wust, H. Fahling, W. John, A. Hinz, and R. Felix, “Inductive heating of ferrimagnetic particles and magnetic fluids: physical evaluation of their potential for hyperthermia,” International Journal of Hyperthermia, vol. 9, no. 1, pp. 51–68, 1993. View at Publisher · View at Google Scholar
  15. P. C. Fannin and S. W. Charles, “Study of a ferrofluid exhibiting both Brownian and Neel relaxation,” Journal of Physics D, vol. 22, no. 1, pp. 187–191, 1989. View at Publisher · View at Google Scholar
  16. C. C. Berry and A. S. G. Curtis, “Functionalisation of magnetic nanoparticles for applications in biomedicine,” Journal of Physics D, vol. 36, no. 13, pp. R198–R206, 2003. View at Publisher · View at Google Scholar
  17. G. Glöckl, R. Hergt, M. Zeisberger, S. Dutz, S. Nagel, and W. Weitschies, “The effect of field parameters, nanoparticle properties and immobilization on the specific heating power in magnetic particle hyperthermia,” Journal of Physics: Condensed Matter, vol. 18, no. 38, pp. S2935–S2949, 2006. View at Publisher · View at Google Scholar
  18. R. M. Cornell and U. Schwertmann, The Iron Oxides: Structure, Properties, Reactions, Occurrence and Uses, John Wiley & Sons, New York, NY, USA, 1996.
  19. S. Vasseur, E. Duguet, J. Portier et al., “Lanthanum manganese perovskite nanoparticles as possible in vivo mediators for magnetic hyperthermia,” Journal of Magnetism and Magnetic Materials, vol. 302, no. 2, pp. 315–320, 2006. View at Publisher · View at Google Scholar
  20. D. Bahadur, J. Giri, B. B. Nayak et al., “Processing, properties and some novel applications of magnetic nanoparticles,” Pramana, vol. 65, no. 4, pp. 663–679, 2005. View at Google Scholar
  21. M. Ma, Y. Wu, J. Zhou, Y. Sun, Y. Zhang, and N. Gu, “Size dependence of specific power absorption of Fe3O4 particles in AC magnetic field,” Journal of Magnetism and Magnetic Materials, vol. 268, no. 1-2, pp. 33–39, 2004. View at Publisher · View at Google Scholar
  22. H. Yin, H. P. Too, and G. M. Chow, “The effects of particle size and surface coating on the cytotoxicity of nickel ferrite,” Biomaterials, vol. 26, no. 29, pp. 5818–5826, 2005. View at Publisher · View at Google Scholar
  23. I. Baker, Q. Zeng, W. Li, and C. R. Sullivan, “Heat deposition in iron oxide and iron nanoparticles for localized hyperthermia,” Journal of Applied Physics, vol. 99, no. 8, Article ID 08H106, 3 pages, 2006. View at Publisher · View at Google Scholar
  24. P. Keblinski, D. G. Cahill, A. Bodapati, C. R. Sullivan, and T. A. Taton, “Limits of localized heating by electromagnetically excited nanoparticles,” Journal of Applied Physics, vol. 100, no. 5, Article ID 054305, 5 pages, 2006. View at Publisher · View at Google Scholar
  25. H. Qi and N. A. Diakides, “Thermography,” in Encyclopedia of Medical Devices and Instrumentation, J. G. Webster, Ed., John Wiley & Sons, New York, NY, USA, 2nd edition, 2006. View at Google Scholar
  26. J. R. Oleson, T. C. Cetas, and P. M. Corry, “Hyperthermia by magnetic induction: experimental and theoretical results for coaxial coil pairs,” Radiation Research, vol. 95, no. 1, pp. 175–186, 1983. View at Publisher · View at Google Scholar
  27. J. P. Reilly, “Principle of nerve and heart excitation by time-variyng magnetic fields,” Annals of the New York Academy of Sciences, vol. 649, pp. 96–117, 1992. View at Publisher · View at Google Scholar
  28. J. R. Oleson, R. S. Heusinkveld, and M. R. Manning, “Hyperthermia by magnetic induction: II. Clinical experience with concentric electrodes,” International Journal of Radiation Oncology Biology Physics, vol. 9, no. 4, pp. 549–556, 1983. View at Google Scholar
  29. W. J. Atkinson, I. A. Brezovich, and D. P. Chakraborty, “Usable frequencies in hyperthermia with thermal seeds,” IEEE Transactions on Biomedical Engineering, vol. 31, no. 1, pp. 70–75, 1984. View at Publisher · View at Google Scholar
  30. Q. A. Pankhurst, J. Connolly, S. K. Jones, and J. Dobson, “Applications of magnetic nanoparticles in biomedicine,” Journal of Physics D, vol. 36, no. 13, pp. R167–R181, 2003. View at Publisher · View at Google Scholar