Table of Contents Author Guidelines Submit a Manuscript
Advances in Optical Technologies
Volume 2008 (2008), Article ID 412518, 15 pages
http://dx.doi.org/10.1155/2008/412518
Research Article

Development of Silicon Photonics Devices Using Microelectronic Tools for the Integration on Top of a CMOS Wafer

1CEA-Leti, MINATEC, 17 rue des Martyrs, 38054 Grenoble, France
2Institut d'Electronique Fondamentale, Université Paris-Sud XI, UMR8622, CNRS, Bat. 220, 91405 Orsay Cedex, France
3Institut des Nanotechnologies de Lyon, Université de Lyon, INL-UMR5270, CNRS, INSA de Lyon, 69621 Villeurbanne, France
4Institut des Nanotechnologies de Lyon, Université de Lyon, INL-UMR5270, CNRS, Ecole Centrale de Lyon, 69134 Ecully, France

Received 6 December 2007; Accepted 13 March 2008

Academic Editor: Pavel Cheben

Copyright © 2008 J. M. Fedeli et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. G. T. Reed, “The optical age of silicon,” Nature, vol. 427, no. 6975, pp. 595–596, 2004. View at Publisher · View at Google Scholar
  2. G. Nunn, “CMOS photonics,” in Proceedings of the IEEE SOI Conference (SOI '06), Niagara Falls, NY, USA, October 2006.
  3. S. Lardenois, D. Pascal, L. Vivien et al., “Low-loss submicrometer silicon-on-insulator rib waveguides and corner mirrors,” Optics Letters, vol. 28, no. 13, pp. 1150–1152, 2003. View at Publisher · View at Google Scholar
  4. L. Vivien, S. Lardenois, D. Pascal et al., “Experimental demonstration of a low-loss optical H-tree distribution using silicon-on-insulator microwaveguides,” Applied Physics Letters, vol. 85, no. 5, pp. 701–703, 2004. View at Publisher · View at Google Scholar
  5. D. Marris, L. Vivien, D. Pascal et al., “Experimental demonstration of 1 to 1024 optical division using slightly etched rib silicon-on-insulator waveguides,” in Proceedings of the 2nd IEEE International Conference on Group IV Photonics, pp. 204–206, Antwerp, Belgium, September 2005. View at Publisher · View at Google Scholar
  6. D. Marris, L. Vivien, D. Pascal et al., “Ultralow loss successive divisions using silicon-on-insulator microwaveguides,” Applied Physics Letters, vol. 87, no. 21, Article ID 211102, 3 pages, 2005. View at Publisher · View at Google Scholar
  7. L. Vivien, D. Pascal, S. Lardenois et al., “Light injection in SOI microwaveguides using high-efficiency grating couplers,” Journal of Lightwave Technology, vol. 24, no. 10, pp. 3810–3815, 2006. View at Publisher · View at Google Scholar
  8. R. S. Jacobsen, K. N. Andersen, P. I. Borel et al., “Strained silicon as a new electro-optic material,” Nature, vol. 441, no. 7090, pp. 199–202, 2006. View at Publisher · View at Google Scholar
  9. P. Yu, J. Wu, and B.-F. Zhu, “Enhanced quantum-confined Pockels effect in SiGe superlattices,” Physical Review B, vol. 73, Article ID 235328, 7 pages, 2006. View at Publisher · View at Google Scholar
  10. Y.-H. Kuo, Y. K. Lee, Y. Ge et al., “Strong quantum-confined Stark effect in germanium quantum-well structures on silicon,” Nature, vol. 437, no. 7063, pp. 1334–1336, 2005. View at Publisher · View at Google Scholar
  11. J. E. Roth, O. Fidaner, R. K. Schaevitz et al., “Optical modulator on silicon employing germanium quantum wells,” Optics Express, vol. 15, no. 9, pp. 5851–5859, 2007. View at Publisher · View at Google Scholar
  12. J. Liu, D. Pan, S. Jongthammanurak, S. Wada, L. C. Kimerling, and J. Michel, “Design of monolithically integrated GeSi electroabsorption modulators and photodetectors on an SOI platform,” Optics Express, vol. 15, no. 2, pp. 623–628, 2007. View at Google Scholar
  13. Q. Xu, S. Manipatruni, B. Schmidt, J. Shakya, and M. Lipson, “12.5 Gbit/s carrier-injection-based silicon micro-ring silicon modulators,” Optics Express, vol. 15, no. 2, pp. 430–436, 2007. View at Google Scholar
  14. B. Schmidt, Q. Xu, J. Shakya, S. Manipatruni, and M. Lipson, “Compact electro-optic modulator on silicon-on-insulator substrates using cavities with ultra-small modal volumes,” Optics Express, vol. 15, no. 6, pp. 3140–3148, 2007. View at Publisher · View at Google Scholar
  15. L. Liao, D. Samara-Rubio, M. Morse et al., “High speed silicon Mach-Zehnder modulator,” Optics Express, vol. 13, no. 8, pp. 3129–3135, 2005. View at Publisher · View at Google Scholar
  16. A. Liu, L. Liao, D. Rubin et al., “High-speed optical modulation based on carrier depletion in a silicon waveguide,” Optics Express, vol. 15, no. 2, pp. 660–668, 2007. View at Google Scholar
  17. F. Y. Gardes, G. T. Reed, N. G. Emerson, and C. E. Png, “A sub-micron depletion-type photonic modulator in silicon on insulator,” Optics Express, vol. 13, no. 22, pp. 8845–8854, 2005. View at Publisher · View at Google Scholar
  18. D. Marris-Morini, X. L. Roux, L. Vivien et al., “Optical modulation by carrier depletion in a silicon PIN diode,” Optics Express, vol. 14, no. 22, pp. 10838–10843, 2006. View at Publisher · View at Google Scholar
  19. D. Marris, E. Cassan, and L. Vivien, “Response time analysis of SiGe/Si modulation-doped multiple-quantum-well structures for optical modulation,” Journal of Applied Physics, vol. 96, no. 11, pp. 6109–6112, 2004. View at Publisher · View at Google Scholar
  20. G. Roelkens, D. Van Thourhout, R. Baets, R. Nötzel, and M. Smit, “Laser emission and photodetection in an InP/InGaAsP layer integrated on and coupled to a silicon-on-insulator waveguide circuit,” Optics Express, vol. 14, no. 18, pp. 8154–8159, 2006. View at Publisher · View at Google Scholar
  21. J. Bourckaert, G. Roelkens, D. Van Thourhout, and R. Baets, “Compact InAlAs-InGaAs metal-semiconductor-metal photodetectors integrated on silicon-on-insulator waveguides,” IEEE Photonics Technology Letters, vol. 19, no. 19, pp. 1484–1486, 2007. View at Google Scholar
  22. M. Jutzi, M. Berroth, G. Wöhl, M. Oehme, and E. Kasper, “Ge-on-Si vertical incidence photodiodes with 39-GHz bandwidth,” IEEE Photonics Technology Letters, vol. 17, no. 7, pp. 1510–1512, 2005. View at Publisher · View at Google Scholar
  23. M. Rouvière, L. Vivien, X. Le Roux et al., “Ultrahigh speed germanium-on-silicon-on-insulator photodetectors for 1.31 and 1.55?µm operation,” Applied Physics Letters, vol. 87, no. 23, pp. 231109–231111, 2005. View at Publisher · View at Google Scholar
  24. D. Ahn, C.-Y. Hong, J. Liu et al., “High performance, waveguide integrated Ge photodetectors,” Optics Express, vol. 15, no. 7, pp. 3916–3921, 2007. View at Publisher · View at Google Scholar
  25. L. Vivien, M. Rouvière, J.-M. Fédéli et al., “High speed and high responsivity germanium photodetector integrated in a silicon-on-insulator microwaveguide,” Optics Express, vol. 15, no. 15, pp. 9843–9848, 2007. View at Publisher · View at Google Scholar
  26. R. Orobtchouk, N. Schnell, T. Benyattou, and J. M. Fedeli, “Compact building block for optical link on SOI technology,” in Proceedings of the 12th European Conference on Integrated Optics (ECIO '05), pp. 221–224, Grenoble, France, April 2005.
  27. R. Stengl, T. Tan, and U. Gösele, “A model for the silicon wafer bonding process,” Japanese Journal of Applied Physics, vol. 28, no. 10, pp. 1735–1741, 1989. View at Google Scholar
  28. U. Gösele, Y. Bluhm, G. Kästner et al., “Fundamental issues in wafer bonding,” Journal of Vacuum Science & Technology A, vol. 17, no. 4, pp. 1145–1152, 1999. View at Publisher · View at Google Scholar
  29. M. Kostrzewa, L. Di Cioccio, J. M. Fedeli et al., “Die-to-wafer molecular bonding for optical interconnects and packaging,” in Proceedings of the 15th Microelectronics and Packaging Conference and Exhibition (EMPC '05), Brugge, Belgium, June 2005.
  30. U. Gösele, Q.-Y. Tong, A. Schumacher et al., “Wafer bonding for microsystems technologies,” Sensors and Actuators A, vol. 74, no. 1–3, pp. 161–168, 1999. View at Publisher · View at Google Scholar
  31. J. Van Campenhout, P. Rojo-Romeo, D. Van Thourhout et al., “An electrically driven membrane microdisk laser for the integration of photonic and electronic ICs,” in Proceedings of the 18th Annual Meeting of the IEEE Lasers & Electro-Optics Society (LEOS '05), p. PD 1.7, Sydney, Australia, October 2005.
  32. P. Rojo-Romeo, J. Van Campenhout, P. Regreny et al., “Heterogeneous integration of electrically driven microdisk based laser sources for optical interconnects and photonic ICs,” Optics Express, vol. 14, no. 9, pp. 3864–3871, 2006. View at Publisher · View at Google Scholar
  33. J. Van Campenhout, P. Rojo-Romeo, P. Regreny et al., “Electrically pumped InP-based microdisk lasers integrated with a nanophotonic silicon-on-insulator waveguide circuit,” Optics Express, vol. 15, no. 11, pp. 6744–6749, 2007. View at Publisher · View at Google Scholar
  34. P. R. A. Binetti, J. Van Campenhout, X. J. M. Leijtens et al., “An optical interconnect layer on silicon,” in Proceedings of the 13th European Conference on Integrated Optics (ECIO '07), pp. 1–3, Copenhagen, Denmark, April 2007.
  35. D. Van Thourhout, J. Van Campenhout, P. Rojo-Romeo et al., “PICMOS—a photonic interconnect layer on CMOS,” in Proceedings of the 33rd European Conference and Exhibition on Optical Communication (ECOC '07), Berlin, Germany, September 2007.