Table of Contents
Advances in Optical Technologies
Volume 2008, Article ID 568936, 10 pages
http://dx.doi.org/10.1155/2008/568936
Review Article

On-Chip All-Optical Switching and Memory by Silicon Photonic Crystal Nanocavities

NTT Basic Research Laboratories, NTT Corporation, 3-1 Morinosato-Wakamiya, Atsugi 2430198, Japan

Received 23 December 2007; Accepted 13 April 2008

Academic Editor: D. Lockwood

Copyright © 2008 Masaya Notomi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. B.-S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nature Materials, vol. 4, no. 3, pp. 207–210, 2005. View at Publisher · View at Google Scholar
  2. S. Noda, M. Fujita, and T. Asano, “Spontaneous-emission control by photonic crystals and nanocavities,” Nature Photonics, vol. 1, no. 8, pp. 449–458, 2007. View at Publisher · View at Google Scholar
  3. E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, T. Tanabe, and T. Watanabe, “Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect,” Applied Physics Letters, vol. 88, no. 4, Article ID 041112, 3 pages, 2006. View at Publisher · View at Google Scholar
  4. T. Tanabe, M. Notomi, E. Kuramochi, A. Shinya, and H. Taniyama, “Trapping and delaying photons for one nanosecond in an ultrasmall high-Q photonic-crystal nanocavity,” Nature Photonics, vol. 1, no. 1, pp. 49–52, 2007. View at Publisher · View at Google Scholar
  5. R. Herrmann, T. Sünner, T. Hein, A. Löffler, M. Kamp, and A. Forchel, “Ultrahigh-quality photonic crystal cavity in GaAs,” Optics Letters, vol. 31, no. 9, pp. 1229–1231, 2006. View at Publisher · View at Google Scholar
  6. T. Tanabe, A. Shinya, E. Kuramochi, S. Kondo, H. Taniyama, and M. Notomi, “Single point defect photonic crystal nanocavity with ultrahigh quality factor achieved by using hexapole mode,” Applied Physics Letters, vol. 91, no. 2, Article ID 021110, 3 pages, 2007. View at Publisher · View at Google Scholar
  7. T. Tanabe, M. Notomi, E. Kuramochi, and H. Taniyama, “Large pulse delay and small group velocity achieved using ultrahigh-Q photonic crystal nanocavities,” Optics Express, vol. 15, no. 12, pp. 7826–7839, 2007. View at Publisher · View at Google Scholar
  8. M. Notomi, T. Tanabe, A. Shinya et al., “Nonlinear and adiabatic control of high-Q photonic crystal nanocavities,” Optics Express, vol. 15, no. 26, pp. 17458–17481, 2007. View at Publisher · View at Google Scholar
  9. M. Soljačić and J. D. Joannopoulos, “Enhancement of nonlinear effects using photonic crystals,” Nature Materials, vol. 3, no. 4, pp. 211–219, 2004. View at Publisher · View at Google Scholar · View at PubMed
  10. H. M. Gibbs, Optical Bistability: Controlling Light with Light, Academic Press, Orlando, Fla, USA, 1985.
  11. S. D. Smith, “Optical bistability, photonic logic, and optical computation,” Applied Optics, vol. 25, no. 10, pp. 1550–1564, 1986. View at Google Scholar
  12. M. Notomi, A. Shinya, S. Mitsugi, G. Kira, E. Kuramochi, and T. Tanabe, “Optical bistable switching action of Si high-Q photonic-crystal nanocavities,” Optics Express, vol. 13, no. 7, pp. 2678–2687, 2005. View at Publisher · View at Google Scholar
  13. S. Mitsugi, A. Shinya, E. Kuramochi, M. Notomi, T. Tshchizawa, and T. Watanabe, “Resonant tunneling wavelength filters with high Q and high transmittance based on photonic crystal slabs,” in Proceedings of the 16th Annual Meeting of IEEE Lasers and Electro-Optics Society (LEOS '03), vol. 1, pp. 214–215, Tucson, Ariz, USA, October 2003. View at Publisher · View at Google Scholar
  14. M. Notomi, A. Shinya, S. Mitsugi, E. Kuramochi, and H.-Y. Ryu, “Waveguides, resonators and their coupled elements in photonic crystal slabs,” Optics Express, vol. 12, no. 8, pp. 1551–1561, 2004. View at Publisher · View at Google Scholar
  15. G. R. Olbright, N. Peyghambarian, H. M. Gibbs, H. A. MacLeod, and F. Van Milligen, “Microsecond room-temperature optical bistability and crosstalk studies in ZnS and ZnSe interference filters with visible light and milliwatt powers,” Applied Physics Letters, vol. 45, no. 10, pp. 1031–1033, 1984. View at Publisher · View at Google Scholar
  16. V. R. Almeida and M. Lipson, “Optical bistability on a silicon chip,” Optics Letters, vol. 29, no. 20, pp. 2387–2389, 2004. View at Publisher · View at Google Scholar
  17. T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, and E. Kuramochi, “All-optical switches on a silicon chip realized using photonic crystal nanocavities,” Applied Physics Letters, vol. 87, no. 15, Article ID 151112, 3 pages, 2005. View at Publisher · View at Google Scholar
  18. V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature, vol. 431, no. 7012, pp. 1081–1084, 2004. View at Publisher · View at Google Scholar · View at PubMed
  19. T. Tanabe, H. Taniyama, and M. Notomi, “Carrier diffusion and recombination in photonic crystal nanocavity optical switches,” Journal of Lightwave Technology, vol. 26, no. 11, pp. 1396–1403, 2008. View at Google Scholar
  20. T. Tanabe, K. Nishiguchi, A. Shinya et al., “Fast all-optical switching using ion-implanted silicon photonic crystal nanocavities,” Applied Physics Letters, vol. 90, no. 3, Article ID 031115, 3 pages, 2007. View at Publisher · View at Google Scholar
  21. T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, and E. Kuramochi, “Fast bistable all-optical switch and memory on a silicon photonic crystal on-chip,” Optics Letters, vol. 30, no. 19, pp. 2575–2577, 2005. View at Publisher · View at Google Scholar
  22. H. Tsuda and T. Kurokawa, “Construction of an all-optical flip-flop by combination of two optical triodes,” Applied Physics Letters, vol. 57, no. 17, pp. 1724–1726, 1990. View at Publisher · View at Google Scholar
  23. A. Shinya, S. Mitsugi, T. Tanabe et al., “All-optical flip-flop circuit composed of coupled two-port resonant tunneling filter in two-dimensional photonic crystal slab,” Optics Express, vol. 14, no. 3, pp. 1230–1235, 2006. View at Publisher · View at Google Scholar