Table of Contents
Advances in Optical Technologies
Volume 2011, Article ID 213783, 20 pages
http://dx.doi.org/10.1155/2011/213783
Review Article

Raman Spectroscopy for Clinical Oncology

1Department of Materials Science and Engineering, University of Florida, Particle Science and Technology Building, 205 Center Drive, P.O. Box 116595, Gainesville, FL 32611, USA
2Particle Engineering Research Center, University of Florida, Particle Science and Technology Building, 205 Center Drive, P.O. Box 116595, Gainesville, FL 32611, USA
3Department of Industrial and Systems Engineering, University of Florida, 303 Weil Hall, P.O. Box 116595, Gainesville, FL 32611-6595, USA
4Department of Environmental Health, Harvard School of Public Health, 677 Huntington Avenue, Boston, MA 02115, USA
5Division of Surgical Oncology, Department of Surgery, College of Medicine, University of Florida, P.O. Box 100286, Shands Hospital, 1600 Archer Road, Gainesville, FL 32610, USA
6Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
7McKnight Brain Institute, University of Florida, 303 Weil Hall, P.O. Box 116595, Gainesville, FL 32611-6595, USA
8Department of Materials Science and Engineering, University of Florida, 100 Rhines Hall, P.O. Box 116400, Gainesville, FL 32611-6400, USA

Received 31 May 2011; Revised 9 August 2011; Accepted 11 August 2011

Academic Editor: Ci-Ling Pan

Copyright © 2011 Michael B. Fenn et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. F. K. Tangka, J. G. Trogdon, and L. C. Richardson, “Cancer treatment cost in the United States: has the burden shifted over time?” Cancer, vol. 116, no. 14, pp. 3477–3484, 2010. View at Publisher · View at Google Scholar · View at Scopus
  2. A. Jemal, R. Siegel, J. Xu, and E. Ward, “Cancer statistics, 2010,” CA Cancer Journal for Clinicians, vol. 60, no. 5, pp. 277–300, 2010. View at Publisher · View at Google Scholar · View at Scopus
  3. S. Keereweer, J. D. F. Kerrebijn, and P. B. A. A. van Driel, “Optical image-guided surgery-where do we stand?” Molecular Imaging and Biology, vol. 13, no. 2, pp. 199–207, 2011. View at Publisher · View at Google Scholar · View at Scopus
  4. C. A. Owen, I. Notingher, R. Hill, M. Stevens, and L. L. Hench, “Progress in Raman spectroscopy in the fields of tissue engineering, diagnostics and toxicological testing,” Journal of Materials Science, vol. 17, no. 11, pp. 1019–1023, 2006. View at Publisher · View at Google Scholar · View at Scopus
  5. J. J. Blaker, J. E. Gough, V. Maquet, I. Notingher, and A. R. Boccaccini, “In vitro evaluation of novel bioactive composites based on Bioglass-filled polylactide foams for bone tissue engineering scaffolds,” Journal of Biomedical Materials Research, vol. 67, no. 4, pp. 1401–1411, 2003. View at Google Scholar · View at Scopus
  6. S. Wachsmann-Hogiu, T. Weeks, and T. Huser, “Chemical analysis in vivo and in vitro by Raman spectroscopy-from single cells to humans,” Current Opinion in Biotechnology, vol. 20, no. 1, pp. 63–73, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. I. Notingher, S. Verrier, S. Haque, J. M. Polak, and L. L. Hench, “Spectroscopic study of human lung epithelial cells (A549) in culture: living cells versus dead cells,” Biopolymers, vol. 72, no. 4, pp. 230–240, 2003. View at Publisher · View at Google Scholar · View at Scopus
  8. G. Pyrgiotakis, O. E. Kundakcioglu, P. M. Pardalos et al., “Raman spectroscopy and support vector machines for quick toxicological evaluation of titania nanoparticles,” Journal of Raman Spectroscopy, vol. 42, no. 6, pp. 1222–1231, 2011. View at Publisher · View at Google Scholar
  9. G. Pyrgiotakis, O. E. Kundakcioglu, K. Finton, P. M. Pardalos, K. Powers, and B. M. Moudgil, “Cell death discrimination with raman spectroscopy and support vector machines,” Annals of Biomedical Engineering, vol. 37, no. 7, pp. 1464–1473, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. I. Notingher, C. Green, C. Dyer et al., “Discrimination between ricin and sulphur mustard toxicity in vitro using Raman spectroscopy,” Journal of the Royal Society Interface, vol. 1, no. 1, pp. 79–90, 2004. View at Publisher · View at Google Scholar · View at Scopus
  11. C. H. Arnaud, “Raman heads for the clinic,” Chemical and Engineering News, vol. 88, no. 38, pp. 8–12, 2010. View at Google Scholar
  12. N. Stone and C. A. Kendall, “Raman spectroscopy for early cancer detection, diagnosis and elucidation of disease-specific biochemical changes,” in Emerging Raman Applications and Techniques in Biomedical and Pharmaceutical Fields, M. Pavel and M. D. Morris, Eds., chapter 13, pp. 315–346, Springer, Berlin, Germany, 2010. View at Google Scholar
  13. S. Wold, K. Esbensen, and P. Geladi, “Principal component analysis,” Chemometrics and Intelligent Laboratory Systems, vol. 2, no. 1–3, pp. 37–52, 1987. View at Google Scholar · View at Scopus
  14. P. A. Lachenbruch and M. Goldstein, “Discriminant analysis,” Biometrics, vol. 35, no. 1, pp. 69–85, 1979. View at Google Scholar · View at Scopus
  15. N. Cristianini and J. Shawe-Taylor, Eds., An Introduction to Support Vector Machines—and other Kernel-Based Learning Methods, Cambridge University Press, Cambridge, UK, 2005.
  16. R. Rabah, R. Weber, G. K. Serhatkulu et al., “Diagnosis of neuroblastoma and ganglioneuroma using Raman spectroscopy,” Journal of Pediatric Surgery, vol. 43, no. 1, pp. 171–176, 2008. View at Publisher · View at Google Scholar · View at Scopus
  17. J. Horsnell, P. Stonelake, J. Christie-Brown et al., “Raman spectroscopy—a new method for the intra-operative assessment of axillary lymph nodes,” Analyst, vol. 135, no. 12, pp. 3042–3047, 2010. View at Publisher · View at Google Scholar · View at Scopus
  18. M. Sattlecker, C. Bessant, J. Smith, and N. Stone, “Investigation of support vector machines and Raman spectroscopy for lymph node diagnostics,” Analyst, vol. 135, no. 5, pp. 895–901, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. J. W. Chan, D. S. Taylor, and S. M. Lane, “Nondestructive identification of individual leukemia cells by laser trapping raman spectroscopy,” Analytical Chemistry, vol. 80, no. 6, pp. 2180–2187, 2008. View at Publisher · View at Google Scholar · View at Scopus
  20. M. S. Bergholt, W. Zheng, K. Lin et al., “Combining near-infrared-excited autofluorescence and Raman spectroscopy improves in vivo diagnosis of gastric cancer,” Biosensors and Bioelectronics, vol. 26, no. 10, pp. 4104–4110, 2011. View at Publisher · View at Google Scholar
  21. J. H. Ward, “Hierarchical grouping to optimise an objective function,” Journal of the American Statistical Association, vol. 58, pp. 236–244, 1963. View at Google Scholar
  22. A. S. Hartigan and M. A. Wong, “A k-means clustering algorithm,” Journal of the Royal Society of Statistical Society, vol. 28, no. 1, pp. 100–108, 1979. View at Google Scholar
  23. K. Meister, D. A. Schmidt, and E. Bründermann, “Confocal Raman microspectroscopy as an analytical tool to assess the mitochondrial status in human spermatozoa,” Analyst, vol. 135, no. 6, pp. 1370–1374, 2010. View at Publisher · View at Google Scholar · View at Scopus
  24. F. Draux, P. Jeannesson, A. Beljebbar et al., “Raman spectral imaging of single living cancer cells: a preliminary study,” Analyst, vol. 134, no. 3, pp. 542–548, 2009. View at Publisher · View at Google Scholar · View at Scopus
  25. R. Kohavi, “A study of cross-validation and boostrap for accuracy estimation and model selection,” in Proceedings of the 14th International Joint Conference on Artificial Intellegence, vol. 2, pp. 1137–1143, 1995.
  26. V. N. Vapnik, The Nature of Statistical Learning Theory, Springer, 2000.
  27. V. N. Vapnik and V. Vapnik, Statistical Learning Theory, vol. 2, Wiley, New York, NY, USA, 1998.
  28. American Cancer Society, Breast Cancer Facts & Figures 2009–2010, American Cancer Society, Atlanta, Ga, USA.
  29. H. G. Welch, S. Woloshin, and L. M. Schwartz, “The sea of uncertainty surrounding ductal carcinoma in situ-the price of screening mammography,” Journal of the National Cancer Institute, vol. 100, no. 4, pp. 228–229, 2008. View at Publisher · View at Google Scholar · View at Scopus
  30. A. S. Haka, K. E. Shafer-Peltier, M. Fitzmaurice, J. Crowe, R. R. Dasari, and M. S. Feld, “Diagnosing breast cancer by using Raman spectroscopy,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 35, pp. 12371–12376, 2005. View at Publisher · View at Google Scholar · View at Scopus
  31. A. S. Haka, Z. Volynskaya, J. A. Gardecki et al., “In vivo margin assessment during partial mastectomy breast surgery using Raman spectroscopy,” Cancer Research, vol. 66, no. 6, pp. 3317–3322, 2006. View at Publisher · View at Google Scholar · View at Scopus
  32. A. S. Haka, Z. Volynskaya, J. A. Gardecki et al., “Diagnosing breast cancer using Raman spectroscopy: prospective analysis,” Journal of Biomedical Optics, vol. 14, no. 5, p. 054023, 2009. View at Google Scholar · View at Scopus
  33. M. V. P. Chowdary, K. Kumar, J. Kurien, S. Mathew, and C. M. Krishna, “Discrimination of normal, benign, and malignant breast tissues by Raman spectroscopy,” Biopolymers, vol. 83, no. 5, pp. 556–569, 2006. View at Publisher · View at Google Scholar · View at Scopus
  34. K. K. Kumar, M. V. P. Chowdary, S. Mathew, L. Rao, C. M. Krishna, and J. Kurien, “Raman spectroscopic diagnosis of breast cancers: evaluation of models,” Journal of Raman Spectroscopy, vol. 39, no. 9, pp. 1276–1282, 2008. View at Publisher · View at Google Scholar · View at Scopus
  35. American Cancer Society, Breast Cancer: Treatment Guidelines for Patients, American Cancer Society, Atlanta, Ga, USA, 2005.
  36. S. Rehman, Z. Movasaghi, A. T. Tucker et al., “Raman spectroscopic analysis of breast cancer tissues: identifying differences between normal, invasive ductal carcinoma and ductal carcinoma in situ of the breast tissue,” Journal of Raman Spectroscopy, vol. 38, no. 10, pp. 1345–1351, 2007. View at Publisher · View at Google Scholar · View at Scopus
  37. H. Silberman and A. Silberman, Eds., Principles and Practice of Surgical Oncology, Lippincott Williams and Wilkins, Philadelphia, Pa, USA, 2010.
  38. H. Abramczyk, J. Surmacki, B. Brozek-Płuska, Z. Morawiec, and M. Tazbir, “The hallmarks of breast cancer by Raman spectroscopy,” Journal of Molecular Structure, vol. 924-926, no. C, pp. 175–182, 2009. View at Publisher · View at Google Scholar · View at Scopus
  39. L. Wheless, J. Black, and A. J. Alberg, “Nonmelanoma skin cancer and the risk of second primary cancers: a systematic review,” Cancer Epidemiology Biomarkers and Prevention, vol. 19, no. 7, pp. 1686–1695, 2010. View at Publisher · View at Google Scholar · View at Scopus
  40. A. F. Jerant, J. T. Johnson, C. D. Sheridan, and T. J. Caffrey, “Early detection and treatment of skin cancer,” American Family Physician, vol. 62, no. 2, pp. 357–368, 2000. View at Google Scholar
  41. J. D. Whited and J. M. Grichnik, “Does this patient have a mole or a melanoma?” Journal of the American Medical Association, vol. 279, no. 9, pp. 696–701, 1998. View at Publisher · View at Google Scholar · View at Scopus
  42. D. L. Shriner, D. K. McCoy, D. J. Goldberg, and R. F. Wagner, “Mohs micrographic surgery,” Journal of the American Academy of Dermatology, vol. 39, no. 1, pp. 79–97, 1998. View at Publisher · View at Google Scholar · View at Scopus
  43. R. M. Levy and C. W. Hanke, “Mohs micrographic surgery: facts and controversies,” Clinics in Dermatology, vol. 28, no. 3, pp. 269–274, 2010. View at Publisher · View at Google Scholar · View at Scopus
  44. L. Brochez, E. Verhaeghe, E. Grosshans et al., “Inter-observer variation in the histopathological diagnosis of clinically suspicious pigmented skin lesions,” The Journal of Pathology, vol. 196, no. 4, pp. 459–466, 2002. View at Publisher · View at Google Scholar · View at Scopus
  45. C. A. Lieber, S. K. Majumder, D. L. Ellis, D. D. Billheimer, and A. Mahadevan-Jansen, “In vivo nonmelanoma skin cancer diagnosis using Raman microspectroscopy,” Lasers in Surgery and Medicine, vol. 40, no. 7, pp. 461–467, 2008. View at Publisher · View at Google Scholar · View at Scopus
  46. M. Larraona-Puy, A. Ghita, A. Zoladek et al., “Development of Raman microspectroscopy for automated detection and imaging of basal cell carcinoma,” Journal of Biomedical Optics, vol. 14, no. 5, Article ID 054031, 2009. View at Google Scholar
  47. M. Larraona-Puy, A. Ghita, A. Zoladek et al., “Discrimination between basal cell carcinoma and hair follicles in skin tissue sections by Raman micro-spectroscopy,” Journal of Molecular Structure, vol. 993, no. 1–3, pp. 57–61, 2011. View at Publisher · View at Google Scholar · View at Scopus
  48. B. Bodanese, L. Silveira, R. Albertini, R. A. Zângaro, and M. T. T. Pacheco, “Differentiating normal and basal cell carcinoma human skin tissues in vitro using dispersive Raman spectroscopy: a comparison between principal components analysis and simplified biochemical models,” Photomedicine and Laser Surgery, vol. 28, supplement 1, pp. S119–S127, 2010. View at Publisher · View at Google Scholar · View at Scopus
  49. R. El-Zein, M. Bondy, and M. Wrensch, “Brain tumors,” in Epidemiology of Brain Tumors, F. Ali-Osman, Ed., chapter 1, Humana Press, Totowas, NJ, USA, 2005. View at Google Scholar
  50. M. Mut and D. Schiff, “Unmet needs in the treatment of glioblastoma,” Expert Review of Anticancer Therapy, vol. 9, no. 5, pp. 545–551, 2009. View at Publisher · View at Google Scholar · View at Scopus
  51. A. Beljebbar, S. Dukic, N. Amharref, and M. Manfait, “Ex vivo and in vivo diagnosis of C6 glioblastoma development by Raman spectroscopy coupled to a microprobe,” Analytical and Bioanalytical Chemistry, vol. 398, no. 1, pp. 477–487, 2010. View at Publisher · View at Google Scholar · View at Scopus
  52. C. Krafft, S. B. Sobottka, G. Schackert, and R. Salzer, “Raman and infrared spectroscopic mapping of human primary intracranial tumors: a comparative study,” Journal of Raman Spectroscopy, vol. 37, no. 1–3, pp. 367–375, 2006. View at Publisher · View at Google Scholar · View at Scopus
  53. C. Krafft, M. Kirsch, C. Beleites, G. Schackert, and R. Salzer, “Methodology for fiber-optic Raman mapping and FTIR imaging of metastases in mouse brains,” Analytical and Bioanalytical Chemistry, vol. 389, no. 4, pp. 1133–1142, 2007. View at Publisher · View at Google Scholar · View at Scopus
  54. M. Kirsch, G. Schackert, R. Salzer, and C. Krafft, “Raman spectroscopic imaging for in vivo detection of cerebral brain metastases,” Analytical and Bioanalytical Chemistry, vol. 398, no. 4, pp. 1707–1713, 2010. View at Publisher · View at Google Scholar · View at Scopus
  55. D. I. Ellis and R. Goodacre, “Metabolic fingerprinting in disease diagnosis: biomedical applications of infrared and Raman spectroscopy,” Analyst, vol. 131, no. 8, pp. 875–885, 2006. View at Publisher · View at Google Scholar · View at Scopus
  56. M. Köhler, S. MacHill, R. Salzer, and C. Krafft, “Characterization of lipid extracts from brain tissue and tumors using Raman spectroscopy and mass spectrometry,” Analytical and Bioanalytical Chemistry, vol. 393, no. 5, pp. 1513–1520, 2009. View at Publisher · View at Google Scholar · View at Scopus
  57. H. Wills, R. Kast, C. Stewart et al., “Raman spectroscopy detects and distinguishes neuroblastoma and related tissues in fresh and (banked) frozen specimens,” Journal of Pediatric Surgery, vol. 44, no. 2, pp. 386–391, 2009. View at Publisher · View at Google Scholar · View at Scopus
  58. A. Okines, M. Verheij, W. Allum, D. Cunningham, and A. Cervantes, “Gastric cancer: ESMO clinical practice guidelines for diagnosis, treatment and follow-up,” Annals of Oncology, vol. 21, no. 5, pp. v50–v54, 2010. View at Publisher · View at Google Scholar · View at Scopus
  59. S. K. Teh, W. Zheng, K. Y. Ho, M. Teh, K. G. Yeoh, and Z. Huang, “Diagnostic potential of near-infrared Raman spectroscopy in the stomach: differentiating dysplasia from normal tissue,” British Journal of Cancer, vol. 98, no. 2, pp. 457–465, 2008. View at Publisher · View at Google Scholar · View at Scopus
  60. S. K. Teh, W. Zheng, K. Y. Ho, M. Teh, K. G. Yeoh, and Z. Huang, “Near-infrared Raman spectroscopy for early diagnosis and typing of adenocarcinoma in the stomach,” British Journal of Surgery, vol. 97, no. 4, pp. 550–557, 2010. View at Publisher · View at Google Scholar · View at Scopus
  61. Z. Huang, S. K. Teh, W. Zheng et al., “In vivo detection of epithelial neoplasia in the stomach using image-guided Raman endoscopy,” Biosensors and Bioelectronics, vol. 26, no. 2, pp. 383–389, 2010. View at Publisher · View at Google Scholar · View at Scopus
  62. M. S. Bergholt, W. Zheng, K. Lin et al., “Raman endoscopy for in vivo differentiation between benign and malignant ulcers in the stomach,” Analyst, vol. 135, no. 12, pp. 3162–3168, 2010. View at Publisher · View at Google Scholar · View at Scopus
  63. M. S. Bergholt, W. Zheng, K. Lin et al., “In vivo diagnosis of gastric cancer using Raman endoscopy and ant colony optimization techniques,” International Journal of Cancer, vol. 128, no. 11, pp. 2673–2680, 2011. View at Publisher · View at Google Scholar
  64. M. S. Bergholt, W. Zheng, K. Lin et al., “Combining near-infrared-excited autofluorescence and Raman spectroscopy improves in vivo diagnosis of gastric cancer,” Biosensors and Bioelectronics, vol. 26, no. 10, pp. 4104–4110, 2011. View at Publisher · View at Google Scholar
  65. M. S. Bergholt, W. Zheng, K. Lin et al., “In vivo diagnosis of esophageal cancer using image-guided Raman endoscopy and biomolecular modeling,” Technology in Cancer Research and Treatment, vol. 10, no. 2, pp. 103–112, 2011. View at Google Scholar
  66. M. S. Bergholt, W. Zheng, K. Lin et al., “Characterizing variability in in vivo Raman spectra of different anatomical locations in the upper gastrointestinal tract toward cancer detection,” Journal of Biomedical Optics, vol. 16, no. 3, Article ID 037003, 2011. View at Google Scholar
  67. A. Jemal, R. Siegel, Y. Hao et al., “Cancer statistics, 2008,” CA Cancer Journal for Clinicians, vol. 58, no. 2, pp. 71–96, 2008. View at Publisher · View at Google Scholar · View at Scopus
  68. R. Labianca, B. Nordlinger, G. D. Beretta, A. Brouquet, and A. Cervantes, “Primary colon cancer: ESMO clinical practice guidelines for diagnosis, adjuvant treatment and follow-up,” Annals of Oncology, vol. 21, supplement 5, pp. v70–v77, 2010. View at Publisher · View at Google Scholar · View at Scopus
  69. M. V. Chowdary, K. K. Kumar, K. Thakur et al., “Discrimination of normal and malignant mucosal tissues of the colon by Raman spectroscopy,” Photomedicine and Laser Surgery, vol. 25, no. 4, pp. 269–274, 2007. View at Publisher · View at Google Scholar · View at Scopus
  70. E. Widjaja, W. Zheng, and Z. Huang, “Classification of colonic tissues using near-infrared Raman spectroscopy and support vector machines,” International Journal of Oncology, vol. 32, no. 3, pp. 653–662, 2008. View at Google Scholar · View at Scopus
  71. A. Beljebbar, O. Bouché, M. D. Diébold et al., “Identification of Raman spectroscopic markers for the characterization of normal and adenocarcinomatous colonic tissues,” Critical Reviews in Oncology/Hematology, vol. 72, no. 3, pp. 255–264, 2009. View at Publisher · View at Google Scholar
  72. K. K. Wang and R. E. Sampliner, “Updated guidelines 2008 for the diagnosis, surveillance and therapy of Barrett's esophagus,” American Journal of Gastroenterology, vol. 103, no. 3, pp. 788–797, 2008. View at Publisher · View at Google Scholar · View at Scopus
  73. M. Stahl, W. Budach, H. J. Meyer, and A. Cervantes, “Esophageal cancer: clinical practice guidelines for diagnosis, treatment and follow-up,” Annals of Oncology, vol. 21, supplement 5, pp. v46–v49, 2010. View at Publisher · View at Google Scholar · View at Scopus
  74. G. Shetty, C. Kendall, N. Shepherd, N. Stone, and H. Barr, “Raman spectroscopy: elucidation of biochemical changes in carcinogenesis of oesophagus,” British Journal of Cancer, vol. 94, no. 10, pp. 1460–1464, 2006. View at Publisher · View at Google Scholar · View at Scopus
  75. C. Kendall, J. Day, J. Hutchings et al., “Evaluation of Raman probe for oesophageal cancer diagnostics,” Analyst, vol. 135, no. 12, pp. 3038–3041, 2010. View at Publisher · View at Google Scholar · View at Scopus
  76. M. Schiffman, P. E. Castle, J. Jeronimo, A. C. Rodriguez, and S. Wacholder, “Human papillomavirus and cervical cancer,” The Lancet, vol. 370, no. 9590, pp. 890–907, 2007. View at Publisher · View at Google Scholar · View at Scopus
  77. C. M. Krishna, G. D. Sockalingum, and M. S. Vidyasagar, “An overview on applications of optical spectroscopy in cervical cancers,” Journal of Cancer Research and Therapeutics, vol. 4, no. 1, pp. 26–36, 2008. View at Google Scholar · View at Scopus
  78. P. R. T. Jess, D. D. W. Smith, M. Mazilu, K. Dholakia, A. C. Riches, and C. S. Herrington, “Early detection of cervical neoplasia by Raman spectroscopy,” International Journal of Cancer, vol. 121, no. 12, pp. 2723–2728, 2007. View at Publisher · View at Google Scholar · View at Scopus
  79. K. M. Ostrowska, A. Malkin, A. Meade et al., “Investigation of the influence of high-risk human papillomavirus on the biochemical composition of cervical cancer cells using vibrational spectroscopy,” Analyst, vol. 135, no. 12, pp. 3087–3093, 2010. View at Publisher · View at Google Scholar · View at Scopus
  80. F. M. Lyng, E. Ó. Faoláin, J. Conroy et al., “Vibrational spectroscopy for cervical cancer pathology, from biochemical analysis to diagnostic tool,” Experimental and Molecular Pathology, vol. 82, no. 2, pp. 121–129, 2007. View at Publisher · View at Google Scholar · View at Scopus
  81. M. S. Vidyasagar, K. Maheedhar, B. M. Vadhiraja, D. J. Fernendes, V. B. Kartha, and C. M. Krishna, “Prediction of radiotherapy response in cervix cancer by Raman spectroscopy: a pilot study,” Biopolymers, vol. 89, no. 6, pp. 530–537, 2008. View at Publisher · View at Google Scholar · View at Scopus
  82. A. Robichaux-Viehoever, E. Kanter, H. Shappell, D. Billheimer, H. Jones, and A. Mahadevan-Jansen, “Characterization of Raman spectra measured in vivo for the detection of cervical dysplasia,” Applied Spectroscopy, vol. 61, no. 9, pp. 986–993, 2007. View at Google Scholar · View at Scopus
  83. E. M. Kanter, S. Majumder, G. J. Kanter, E. M. Woeste, and A. Mahadevan-Jansen, “Effect of hormonal variation on Raman spectra for cervical disease detection,” American Journal of Obstetrics and Gynecology, vol. 200, no. 5, pp. 512.e1–512.e5, 2009. View at Publisher · View at Google Scholar · View at Scopus
  84. S. Warnakulasuriya, “Global epidemiology of oral and oropharyngeal cancer,” Oral Oncology, vol. 45, no. 4-5, pp. 309–316, 2009. View at Publisher · View at Google Scholar · View at Scopus
  85. S. Warnakulasuriya, “Living with oral cancer: epidemiology with particular reference to prevalence and life-style changes that influence survival,” Oral Oncology, vol. 46, no. 6, pp. 407–410, 2010. View at Publisher · View at Google Scholar · View at Scopus
  86. N. W. Johnson, S. Warnakulasuriya, P. C. Gupta et al., “Global oral health inequalities in incidence and outcomes for oral cancer: causes and solutions,” Advances in Dental Research, vol. 23, no. 2, pp. 237–246, 2011. View at Google Scholar
  87. C. Scully, J. S. Bagan, C. Hopper, and J. B. Epstein, “Oral cancer: current and future diagnostic techniques,” American Journal of Dentistry, vol. 21, no. 4, pp. 199–209, 2008. View at Google Scholar · View at Scopus
  88. C. M. Krishna, G. D. Sockalingum, J. Kurien et al., “Micro-Raman spectroscopy for optical pathology of oral squamous cell carcinoma,” Applied Spectroscopy, vol. 58, no. 9, pp. 1128–1135, 2004. View at Publisher · View at Google Scholar · View at Scopus
  89. R. Malini, K. Venkatakrishna, J. Kurien et al., “Discrimination of normal, inflammatory, premalignant, and malignant oral tissue: a Raman spectroscopy study,” Biopolymers, vol. 81, no. 3, pp. 179–193, 2006. View at Publisher · View at Google Scholar · View at Scopus
  90. Y. Li, Z. Wen, L. Li, M. L. Li, N. Gao, and Y. Z. Guo, “Research on the Raman spectral character and diagnostic value of squamous cell carcinoma of oral mucosa,” Journal of Raman Spectroscopy, vol. 41, no. 2, pp. 142–147, 2010. View at Publisher · View at Google Scholar · View at Scopus
  91. C. N. Klabunde, P. M. Marcus, G. A. Silvestri et al., “U.S. primary care physicians' lung cancer screening beliefs and recommendations,” American Journal of Preventive Medicine, vol. 39, no. 5, pp. 411–420, 2010. View at Publisher · View at Google Scholar · View at Scopus
  92. C. M. Tammemagi, P. F. Pinsky, N. E. Caporaso et al., “Lung cancer risk prediction: prostate, lung, colorectal and ovarian cancer screening trial models and validation,” Journal of the National Cancer Institute, vol. 103, no. 13, pp. 1058–1068, 2011. View at Publisher · View at Google Scholar
  93. D. R. Brenner, J. R. McLaughlin, and R. J. Hung, “Previous lung diseases and lung cancer risk: a systemic review and meta-analysis,” PLoS One, vol. 6, no. 3, article e17479, 2011. View at Google Scholar
  94. A. Jemal, F. Brey, M. M. Center, J. Ferlay, E. Ward, and D. Forman, “Global cancer statistics,” CA Cancer Journal for Clinicians, vol. 61, no. 2, pp. 69–90, 2011. View at Publisher · View at Google Scholar
  95. L. G. Collins, C. Haines, R. Perkel, and R. E. Enck, “Lung cancer: diagnosis and management,” American Family Physician, vol. 75, no. 1, pp. 56–63, 2007. View at Google Scholar · View at Scopus
  96. P. B. Bach, M. J. Kelley, R. C. Tate, and D. C. McCrory, “Screening for lung cancer: a review of the current literature,” Chest, vol. 123, supplement 1, pp. 72S–82S, 2003. View at Google Scholar · View at Scopus
  97. J. E. Tyczynski, F. Bray, and D. M. Parkin, “Lung cancer in Europe in 2000: epidemiology, prevention, and early detection,” The Lancet Oncology, vol. 4, no. 1, pp. 45–55, 2003. View at Publisher · View at Google Scholar · View at Scopus
  98. J. R. Molina, P. Yang, S. D. Cassivi, S. E. Schild, and A. A. Adjei, “Non-small cell lung cancer: epidemiology, risk factors, treatment, and survivorship,” Mayo Clinic Proceedings, vol. 83, no. 5, pp. 584–594, 2008. View at Publisher · View at Google Scholar · View at Scopus
  99. V. L. Roggli, R. T. Vollmer, S. D. Greenberg et al., “Lung cancer heterogeneity: a blinded and randomized study of 100 consecutive cases,” Human Pathology, vol. 16, no. 6, pp. 569–579, 1985. View at Google Scholar · View at Scopus
  100. R. W. Field, B. J. Smith, C. E. Platz et al., “Lung cancer histologic type in the surveillance, epidemiology, and end results registry versus independent review,” Journal of the National Cancer Institute, vol. 96, no. 14, pp. 1105–1107, 2004. View at Google Scholar · View at Scopus
  101. J. S. Thomas, D. Lamb, T. Ashcroft et al., “How reliable is the diagnosis of lung cancer using small biopsy specimens? Report of a UKCCCR Lung Cancer Working Party,” Thorax, vol. 48, no. 11, pp. 1135–1139, 1993. View at Google Scholar
  102. R. Booton, F. Blackhall, and K. Kerr, “Individualised treatment in non-small cell lung cancer: precise tissue diagnosis for all?” Thorax, vol. 66, no. 4, pp. 273–275, 2011. View at Publisher · View at Google Scholar
  103. N. D. Magee, R. J. Beattie, R. Gray et al., “Raman spectroscopy analysis of induced sputum in lung cancer,” American Journal of Respiratory and Critical Care, vol. 181, Article ID A3492, 2010. View at Google Scholar
  104. N. D. Magee, M. Ennis, J. S. Elborn et al., “Raman microscopy in the diagnosis and prognosis of surgically resected nonsmall cell lung cancer,” Journal of Biomedical Optics, vol. 15, no. 2, Article ID 026015, 2010. View at Publisher · View at Google Scholar
  105. J. Lv, L. Zhang, J. Feng et al., “Optical observation of lung cancer with attenuated total reflectance-fourier transform infrared microscope (ATR-FTIR) and confocal Raman microscope,” Spectroscopy Letters, vol. 44, no. 5, pp. 312–317, 2011. View at Publisher · View at Google Scholar
  106. C. Krafft, D. Codrich, G. Pelizzo, and V. Sergo, “Raman and FTIR imaging of lung tissue: methodology for control samples,” Vibrational Spectroscopy, vol. 46, no. 2, pp. 141–149, 2008. View at Publisher · View at Google Scholar · View at Scopus
  107. C. Krafft, D. Codrich, G. Pelizzo, and V. Sergo, “Raman mapping and FTIR imaging of lung tissue: congenital cystic adenomatoid malformation,” Analyst, vol. 133, no. 3, pp. 361–371, 2008. View at Publisher · View at Google Scholar · View at Scopus
  108. N. D. Magee, J. S. Villaumie, E. T. Marple, M. Ennis, J. S. Elborn, and J. J. McGarvey, “Ex vivo diagnosis of lung cancer using a Raman miniprobe,” Journal of Physical Chemistry B, vol. 113, no. 23, pp. 8137–8141, 2009. View at Publisher · View at Google Scholar · View at Scopus
  109. M. A. Short, S. Lam, A. McWilliams, J. Zhao, H. Lui, and H. Zeng, “Development and preliminary results of an endoscopic Raman probe for potential in vivo diagnosis of lung cancers,” Optics Letters, vol. 33, no. 7, pp. 711–713, 2008. View at Publisher · View at Google Scholar · View at Scopus
  110. M. A. Short, S. Lam, A. M. McWilliams, D. N. Ionescu, and H. Zeng, “Using laser raman spectroscopy to reduce false positives of autofluorescence bronchoscopies: a pilot study,” Journal of Thoracic Oncology, vol. 6, no. 7, pp. 1206–1214, 2011. View at Publisher · View at Google Scholar
  111. P. Xanthopoulos, R. De Asmudis, M. R. Guarracino, G. Pyrgiotakis, and P. M. Pardalos, “Supervised classification methods for mining cell differences as depictedby Raman spectroscopy,” in Computational Intelligence Methods for Bioinformatics and Biostatistics, R. Rizzo and P. J. G. Lisboa, Eds., Lecture Notes in Bioinformatics, pp. 112–122, Springer, 2011. View at Google Scholar
  112. M. Guarracino, P. Xanthopoulos, G. Pyrgiotakis et al., “Classification of cancer cell death with spectral dimensionality reduction and generalized eigenvalues,” Artificial Intelligence in Medicine, vol. 53, no. 2, pp. 119–125, 2011. View at Google Scholar
  113. Y. Oshima, H. Shinzawa, T. Takenaka, C. Furihata, and H. Sato, “Discrimination analysis of human lung cancer cells associated with histological type and malignancy using Raman spectroscopy,” Journal of Biomedical Optics, vol. 15, no. 1, p. 017009, 2010. View at Google Scholar · View at Scopus
  114. C. Kendall, J. Hutchings, H. Barr, N. Shepherd, and N. Stone, “Exploiting the diagnostic potential of biomolecular fingerprinting with vibrational spectroscopy,” Faraday Discussions, vol. 149, pp. 279–290, 2011. View at Publisher · View at Google Scholar
  115. X. M. Qian and S. M. Nie, “Single-molecule and single-nanoparticle SERS: from fundamental mechanisms to biomedical applications,” Chemical Society Reviews, vol. 37, no. 5, pp. 912–920, 2008. View at Publisher · View at Google Scholar · View at Scopus
  116. J. H. Kim, J. S. Kim, H. Choi et al., “Nanoparticle probes with surface enhanced Raman spectroscopic tags for cellular cancer targeting,” Analytical Chemistry, vol. 78, no. 19, pp. 6967–6973, 2006. View at Publisher · View at Google Scholar · View at Scopus
  117. T. Vo-Dinh, H. N. Wang, and J. Scaffidi, “Plasmonic nanoprobes for SERS biosensing and bioimaging,” Journal of Biophotonics, vol. 3, no. 1-2, pp. 89–102, 2010. View at Publisher · View at Google Scholar · View at Scopus
  118. A. Campion and P. Kambhampati, “Surface-enhanced Raman scattering,” Chemical Society Reviews, vol. 27, no. 4, pp. 241–250, 1998. View at Google Scholar · View at Scopus
  119. A. W. Wark, R. J. Stokes, S. B. Darby, W. E. Smith, and D. Graham, “Dynamic imaging analysis of SERS-active nanoparticle clusters in suspension,” Journal of Physical Chemistry C, vol. 114, no. 42, pp. 18115–18120, 2010. View at Publisher · View at Google Scholar · View at Scopus
  120. C. Zavaleta, A. Zerda, Z. Liu et al., “Noninvasive Raman spectroscopy in living mice for evaluation of tumor targeting with carbon nanotubes,” Nano Letters, vol. 8, no. 9, pp. 2800–2805, 2008. View at Publisher · View at Google Scholar · View at Scopus
  121. W. Xie, P. Qiu, and C. Mao, “Bio-imaging, detection and analysis by using nanostructures as SERS substrates,” Journal of Materials Chemistry, vol. 21, no. 14, pp. 5190–5202, 2011. View at Publisher · View at Google Scholar
  122. W. Cai, T. Gao, H. Hong, Sun, and S. Jiangtao, “Applications of gold nanoparticles in cancer nanotechnology,” Nanotechnology, Science and Applications, vol. 1, pp. 17–32, 2008. View at Google Scholar
  123. G. von Maltzahn, A. Centrone, J. H. Park et al., “SERS-coded cold nanorods as a multifunctional platform for densely multiplexed near-infrared imaging and photothermal heating,” Advanced Materials, vol. 21, no. 31, pp. 3175–3180, 2009. View at Publisher · View at Google Scholar · View at Scopus
  124. M. Sha, H. Xu, S. G. Penn, and R. Cromer, “SERS nanoparticles: a new optical detection modality for cancer diagnosis,” Nanomedicine, vol. 2, no. 5, pp. 725–734, 2007. View at Publisher · View at Google Scholar · View at Scopus
  125. N. Guarrotxena and G. C. Bazan, “Antibody-functionalized SERS tags with improved sensitivity,” Chemical Communications, vol. 47, no. 31, pp. 8784–8786, 2011. View at Publisher · View at Google Scholar
  126. S. Keren, C. Zavaleta, Z. Cheng, A. De La Zerda, O. Gheysens, and S. S. Gambhir, “Noninvasive molecular imaging of small living subjects using Raman spectroscopy,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 15, pp. 5844–5849, 2008. View at Publisher · View at Google Scholar · View at Scopus
  127. H. Sato, H. Shinzawa, and Y. Komachi, “Fiber-optic Raman probes for biomedical and pharmaceutical applications,” in Emerging Raman Applications and Techniques in Biomedical and Pharmaceutical Fields, M. Pavel and M. D. Morris, Eds., chapter 2, Springer, Berlin, Germany, 2010. View at Google Scholar
  128. A. Nijssen, S. Koljenovic, T. C. Bakker Schut, P. J. Caspers, and G. J. Puppels, “Towards oncological application of Raman spectroscopy,” Journal of Biophotonics, vol. 2, no. 1-2, pp. 29–36, 2009. View at Publisher · View at Google Scholar · View at Scopus
  129. J. T. Motz, M. Hunter, L. H. Galindo et al., “Optical fiber probe for biomedical Raman spectroscopy,” Applied Optics, vol. 43, no. 3, pp. 542–554, 2004. View at Publisher · View at Google Scholar · View at Scopus
  130. J. Mo, W. Zheng, and Z. Huang, “Fiber-optic probe couples ball lens for depth-selected Raman measurements of epithelial tissues,” Biomedical Optics Express, vol. 1, pp. 17–30, 2010. View at Google Scholar
  131. Z. Huang, S. K. Teh, W. Zheng et al., “Integrated Raman spectroscopy and trimodal wide-field imaging techniques for real-time in vivo tissue Raman measurements at endoscopy,” Optics Letters, vol. 34, no. 6, pp. 758–760, 2009. View at Publisher · View at Google Scholar · View at Scopus
  132. Y. Komachi, T. Katagiri, H. Sato, and H. Tashiro, “Improvement and analysis of a micro Raman probe,” Applied Optics, vol. 48, no. 9, pp. 1683–1696, 2009. View at Publisher · View at Google Scholar · View at Scopus
  133. J. C. C. Day, R. Bennett, B. Smith et al., “A miniature confocal Raman probe for endoscopic use,” Physics in Medicine and Biology, vol. 54, no. 23, pp. 7077–7087, 2009. View at Publisher · View at Google Scholar · View at Scopus
  134. C. Reble, I. Gersonde, C. A. Lieber, and J. Helfmann, “Influence of tissue absorbtion and scattering on depth dependent sensitivity of Raman fiber probe investigated by Monte Carlo simulations,” Biomedical Optics Express, vol. 2, no. 3, pp. 520–532, 2011. View at Google Scholar
  135. Y. Komachi, S. Hidetoshi, Y. Matsuura, M. Miyagi, and H. Tashiro, “Raman probe using a single hollow waveguide,” Optics Letters, vol. 30, no. 21, pp. 2942–2944, 2005. View at Publisher · View at Google Scholar · View at Scopus
  136. Y. Matsuura, S. Kino, E. Yokoyama, T. Katagiri, H. Sato, and H. Tashiro, “Flexible fiber-optics probes for Raman and FT-IR remote spectroscopy,” IEEE Journal on Selected Topics in Quantum Electronics, vol. 13, no. 6, pp. 1704–1708, 2007. View at Publisher · View at Google Scholar · View at Scopus
  137. J. Mo, W. Zheng, J. J. H. Low, J. Ng, A. Ilancheran, and Z. Huang, “High wavenumber raman spectroscopy for in vivo detection of cervical dysplasia,” Analytical Chemistry, vol. 81, no. 21, pp. 8908–8915, 2009. View at Publisher · View at Google Scholar · View at Scopus
  138. A. F. García-Flores, L. Raniero, R. A. Canevari et al., “High-wavenumber FT-Raman spectroscopy for in vivo and ex vivo measurements of breast cancer,” Theoretical Chemistry Accounts. In press. View at Publisher · View at Google Scholar
  139. F. W. L. Esmonde-White and M. D. Morris, “Raman imaging and Raman mapping,” in Emerging Raman Applications and Techniques in Biomedical and Pharmaceutical Fields, M. Pavel and M. D. Morris, Eds., chapter 5, Springer, Berlin, Germany, 2010. View at Google Scholar
  140. G. D. Pitt, D. N. Batchelder, R. Bennett et al., “Engineering aspects and applications of the new Raman instrumentation,” IEE Proceedings, vol. 152, no. 6, pp. 241–318, 2005. View at Publisher · View at Google Scholar
  141. S. Schlücker, M. D. Schaeberle, S. W. Huffman, and I. W. Levin, “Raman microspectroscopy: a comparison of point, line, and wide-field imaging methodologies,” Analytical Chemistry, vol. 75, no. 16, pp. 4312–4318, 2003. View at Publisher · View at Google Scholar
  142. P. Matousek and N. Stone, “Emerging concepts in deep Raman spectroscopy of biological tissue,” Analyst, vol. 134, no. 6, pp. 1058–1066, 2009. View at Publisher · View at Google Scholar · View at Scopus