Table of Contents
Advances in Optical Technologies
Volume 2011, Article ID 314952, 8 pages
http://dx.doi.org/10.1155/2011/314952
Review Article

Surface-Emitting Metal Nanocavity Lasers

Department of Electrical Engineering, Eindhoven University of Technology, Postbus 513, 5600 MB Eindhoven, The Netherlands

Received 6 June 2011; Accepted 9 July 2011

Academic Editor: Krassimir Panajotov

Copyright © 2011 Martin T. Hill and Milan J. H. Marell. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. T. H. Maiman, “Stimulated optical radiation in Ruby,” Nature, vol. 187, no. 4736, pp. 493–494, 1960. View at Publisher · View at Google Scholar · View at Scopus
  2. R. N. Hall, G. E. Fenner, J. D. Kingsley, T. J. Soltys, and R. O. Carlson, “Coherent light emission from GaAs junctions,” Physical Review Letters, vol. 9, no. 9, pp. 366–368, 1962. View at Publisher · View at Google Scholar · View at Scopus
  3. K. Iga, “Surface-emitting laser—its birth and generation of new optoelectronics field,” IEEE Journal on Selected Topics in Quantum Electronics, vol. 6, no. 6, pp. 1201–1215, 2000. View at Publisher · View at Google Scholar · View at Scopus
  4. M. T. Hill, Y. S. Oei, B. Smalbrugge et al., “Lasing in metallic-coated nanocavities,” Nature Photonics, vol. 1, no. 10, pp. 589–594, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. M. T. Hill, M. Marell, E. S. P. Leong et al., “Lasing in metal-insulator-metal sub-wavelength plasmonic waveguides,” Optics Express, vol. 17, no. 13, pp. 11107–11112, 2009. View at Publisher · View at Google Scholar · View at Scopus
  6. M. A. Noginov, G. Zhu, A. M. Belgrave et al., “Demonstration of a spaser-based nanolaser,” Nature, vol. 460, no. 7259, pp. 1110–1112, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  7. R. F. Oulton, V. J. Sorger, T. Zentgraf et al., “Plasmon lasers at deep subwavelength scale,” Nature, vol. 461, no. 7264, pp. 629–632, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  8. R. Perahia, T. P. M. Alegre, A. H. Safavi-Naeini, and O. Painter, “Surface-plasmon mode hybridization in subwavelength microdisk lasers,” Applied Physics Letters, vol. 95, no. 20, Article ID 201114, 2009. View at Publisher · View at Google Scholar
  9. K. Yu, A. Lakhani, and M. C. Wu, “Subwavelength metal-optic semiconductor nanopatch lasers,” Optics Express, vol. 18, no. 9, pp. 8790–8799, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. M. P. Nezhad, A. Simic, O. Bondarenko et al., “Room-temperature subwavelength metallo-dielectric lasers,” Nature Photonics, vol. 4, no. 6, pp. 395–399, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. S. H. Kwon, J. H. Kang, C. Seassal et al., “Subwavelength plasmonic lasing from a semiconductor nanodisk with silver nanopan cavity,” Nano Letters, vol. 10, no. 9, pp. 3679–3683, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  12. C. Y. Lu, S. W. Chang, S. L. Chuang, T. D. Germann, and D. Bimberg, “Metal-cavity surface-emitting microlaser at room temperature,” Applied Physics Letters, vol. 96, no. 25, Article ID 251101, 2010. View at Publisher · View at Google Scholar
  13. A. Matsudaira, C.-Y. Lu, S. L. Chuang, and L. Zhang, “Demonstartion of metallic nano-cavity light emitters with electrical injection,” in Conference on Lasers and Electro-Optics (CLEO '11), 2011.
  14. A. V. Maslov and C. Z. Ning, “Size reduction of a semiconductor nanowire laser by using metal coating,” in Physics and Simulation of Optoelectronic Devices XV, Proceedings of SPIE, January 2007. View at Publisher · View at Google Scholar
  15. K. Iga, F. Koyama, and S. Kinoshita, “Surface emitting semiconductor lasers,” IEEE Journal of Quantum Electronics, vol. 24, no. 9, pp. 1845–1855, 1988. View at Publisher · View at Google Scholar · View at Scopus
  16. C. E. Hofmann, F. J. García De Abajo, and H. A. Atwater, “Enhancing the radiative rate in III-V semiconductor plasmonic core-shell nanowire resonators,” Nano Letters, vol. 11, no. 2, pp. 372–376, 2011. View at Publisher · View at Google Scholar · View at PubMed
  17. E. K. Lau, A. Lakhani, R. S. Tucker, and M. C. Wu, “Enhanced modulation bandwidth of nanocavity light emitting devices,” Optics Express, vol. 17, no. 10, pp. 7790–7799, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. S. W. Chang, T. R. Lin, and S. L. Chuang, “Theory of plasmonic Fabry-Perot nanolasers,” Optics Express, vol. 18, no. 14, pp. 14913–14925, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Physical Review B, vol. 6, no. 12, pp. 4370–4379, 1972. View at Publisher · View at Google Scholar · View at Scopus
  20. A. Mizrahi, V. Lomakin, B. A. Slutsky, M. P. Nezhad, L. Feng, and Y. Fainman, “Low threshold gain metal coated laser nanoresonators,” Optics Letters, vol. 33, no. 11, pp. 1261–1263, 2008. View at Publisher · View at Google Scholar · View at Scopus
  21. J. Huang, S. H. Kim, and A. Scherer, “Design of a surface-emitting, subwavelength metal-clad disk laser in the visible spectrum,” Optics Express, vol. 18, no. 19, pp. 19581–19591, 2010. View at Publisher · View at Google Scholar · View at Scopus
  22. H. J. Lezec, A. Degiron, E. Devaux et al., “Beaming light from a subwavelength aperture,” Science, vol. 297, no. 5582, pp. 820–822, 2002. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  23. S. Silver, Microwave Antenna Theory and Design, McGraw-Hill, New York, NY, USA, 1949.
  24. B. T. Lee, T. R. Hayes, P. M. Thomas, R. Pawelek, and P. F. Sciortino, “SiO2 mask erosion and sidewall composition during CH4/H2 reactive ion etching of InGaAsP/InP,” Applied Physics Letters, vol. 63, no. 23, pp. 3170–3172, 1993. View at Publisher · View at Google Scholar · View at Scopus
  25. H. Wang, M. Sun, K. Ding, M. T. Hill, and C.-Z. Ning, “A top-down approach to fabrication of high quality vertical heterostructure nanowire arrays,” Nano Letters, vol. 11, no. 4, pp. 1646–1650, 2011. View at Publisher · View at Google Scholar · View at PubMed
  26. L. G. Shantharama, H. Schumacher, H. P. Leblanc, R. Esagui, R. Bhat, and M. Koza, “Evaluation of single ohmic metallisations for contacting both p- and n-type GaInAs,” Electronics Letters, vol. 26, no. 15, pp. 1127–1129, 1990. View at Google Scholar · View at Scopus
  27. M. Kuttge, E. J. R. Vesseur, J. Verhoeven, H. J. Lezec, H. A. Atwater, and A. Polman, “Loss mechanisms of surface plasmon polaritons on gold probed by cathodoluminescence imaging spectroscopy,” Applied Physics Letters, vol. 93, no. 11, Article ID 113110, 2008. View at Publisher · View at Google Scholar
  28. J. -S. Huang, V. Callegari, P. Geisler et al., “Atomically flat single-crystalline gold nanostructures for plasmonic nanocircuitry,” Nature Communications, vol. 1, no. 9, article 150, 2010. View at Publisher · View at Google Scholar · View at PubMed