Table of Contents
Advances in Optical Technologies
Volume 2012, Article ID 268949, 15 pages
http://dx.doi.org/10.1155/2012/268949
Review Article

Spin-Controlled Vertical-Cavity Surface-Emitting Lasers

Photonics and Terahertz Technology, Ruhr University Bochum, 44780 Bochum, Germany

Received 29 April 2011; Revised 8 December 2011; Accepted 20 December 2011

Academic Editor: Rainer Michalzik

Copyright © 2012 Nils C. Gerhardt and Martin R. Hofmann. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. Datta and B. Das, “Electronic analog of the electro-optic modulator,” Applied Physics Letters, vol. 56, no. 7, pp. 665–667, 1990. View at Publisher · View at Google Scholar · View at Scopus
  2. R. Flederling, M. Kelm, G. Reuscher et al., “Injection and detection of a spin-polarized current in a light-emitting diode,” Nature, vol. 402, no. 6763, pp. 787–790, 1999. View at Publisher · View at Google Scholar · View at Scopus
  3. Y. Ohno, D. K. Young, B. Beschoten, F. Matsukura, H. Ohno, and D. D. Awschalom, “Electrical spin injection in a ferromagnetic semiconductor heterostructure,” Nature, vol. 402, no. 6763, pp. 790–792, 1999. View at Publisher · View at Google Scholar · View at Scopus
  4. H. J. Zhu, M. Ramsteiner, H. Kostial, M. Wassermeier, H. P. Schönherr, and K. H. Ploog, “Room-temperature spin injection from Fe into GaAs,” Physical Review Letters, vol. 87, no. 1, Article ID 016601, 4 pages, 2001. View at Google Scholar · View at Scopus
  5. A. T. Hanbicki, B. T. Jonker, G. Itskos, G. Kioseoglou, and A. Petrou, “Efficient electrical spin injection from a magnetic metal/tunnel barrier contact into a semiconductor,” Applied Physics Letters, vol. 80, no. 7, pp. 1240–1242, 2002. View at Publisher · View at Google Scholar · View at Scopus
  6. N. C. Gerhardt, S. Hövel, C. Brenner et al., “Electron spin injection into GaAs from ferromagnetic contacts in remanence,” Applied Physics Letters, vol. 87, no. 3, Article ID 32502, 3 pages, 2005. View at Publisher · View at Google Scholar · View at Scopus
  7. C. Adelmann, X. Lou, J. Strand, C. J. Palmstrøm, and P. A. Crowell, “Spin injection and relaxation in ferromagnet-semiconductor heterostructures,” Physical Review B, vol. 71, no. 12, Article ID 121301, 4 pages, 2005. View at Publisher · View at Google Scholar · View at Scopus
  8. X. Jiang, R. Wang, R. M. Shelby et al., “Highly spin-polarized room-temperature tunnel injector for semiconductor spintronics using MgO(100),” Physical Review Letters, vol. 94, no. 5, Article ID 056601, 2005. View at Publisher · View at Google Scholar · View at Scopus
  9. S. Hövel, N. C. Gerhardt, M. R. Hofmann et al., “Room temperature electrical spin injection in remanence,” Applied Physics Letters, vol. 93, no. 2, Article ID 021117, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. S. Hallstein, J. D. Berger, M. Hilpert et al., “Manifestation of coherent spin precession in stimulated semiconductor emission dynamics,” Physical Review B, vol. 56, no. 12, pp. R7076–R7079, 1997. View at Google Scholar · View at Scopus
  11. M. Oestreich, J. Hübner, D. Hägele et al., “Spintronics: spin electronics and optoelectronics in semiconductors,” in Advances in Solid State Physics, B. Kramer, Ed., pp. 173–186, Springer, Berlin, Germany, 2001. View at Google Scholar
  12. D. Saha, D. Basu, and P. Bhattacharya, “High-frequency dynamics of spin-polarized carriers and photons in a laser,” Physical Review B, vol. 82, no. 20, Article ID 205309, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. J. Lee, W. Falls, R. Oszwałdowski, and I. Žutić, “Spin modulation in semiconductor lasers,” Applied Physics Letters, vol. 97, no. 4, Article ID 041116, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. M. Y. Li, H. Jähme, H. Soldat, N. C. Gerhardt, M. R. Hofmann, and T. Ackemann, “Birefringence controlled room-temperature picosecond spin dynamics close to the threshold of vertical-cavity surface-emitting laser devices,” Applied Physics Letters, vol. 97, no. 19, Article ID 191114, 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. J. Rudolph, D. Hägele, H. M. Gibbs, G. Khitrova, and M. Oestreich, “Laser threshold reduction in a spintronic device,” Applied Physics Letters, vol. 82, no. 25, pp. 4516–4518, 2003. View at Publisher · View at Google Scholar · View at Scopus
  16. J. Rudolph, S. Döhrmann, D. Hägele, M. Oestreich, and W. Stolz, “Room-temperature threshold reduction in vertical-cavity surface-emitting lasers by injection of spin-polarized electrons,” Applied Physics Letters, vol. 87, no. 24, Article ID 241117, pp. 1–3, 2005. View at Publisher · View at Google Scholar · View at Scopus
  17. M. Holub, J. Shin, D. Saha, and P. Bhattacharya, “Electrical spin injection and threshold reduction in a semiconductor laser,” Physical Review Letters, vol. 98, no. 14, Article ID 146603, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. I. Vurgaftman, M. Holub, B. T. Jonker, and J. R. Meyer, “Estimating threshold reduction for spin-injected semiconductor lasers,” Applied Physics Letters, vol. 93, no. 3, Article ID 031102, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. D. Basu, D. Saha, and P. Bhattacharya, “Optical polarization modulation and gain anisotropy in an electrically injected spin laser,” Physical Review Letters, vol. 102, no. 9, Article ID 093904, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. M. Holub and B. T. Jonker, “Threshold current reduction in spin-polarized lasers: role of strain and valence-band mixing,” Physical Review B, vol. 83, no. 12, Article ID 125309, 2011. View at Publisher · View at Google Scholar
  21. H. Ando, T. Sogawa, and H. Gotoh, “Photon-spin controlled lasing oscillation in surface-emitting lasers,” Applied Physics Letters, vol. 73, no. 5, pp. 566–568, 1998. View at Publisher · View at Google Scholar · View at Scopus
  22. S. Hövel, N. Gerhardt, M. Hofmann, J. Yang, D. Reuter, and A. Wieck, “Spin controlled optically pumped vertical cavity surface emitting laser,” Electronics Letters, vol. 41, no. 5, pp. 251–253, 2005. View at Publisher · View at Google Scholar · View at Scopus
  23. N. Gerhardt, S. Hövel, M. Hofmann, J. Yang, D. Reuter, and A. Wieck, “Enhancement of spin information with vertical cavity surface emitting lasers,” Electronics Letters, vol. 42, no. 2, pp. 88–89, 2006. View at Publisher · View at Google Scholar · View at Scopus
  24. M. Holub and P. Bhattacharya, “Spin-polarized light-emitting diodes and lasers,” Journal of Physics D, vol. 40, no. 11, article R01, pp. R179–R203, 2007. View at Publisher · View at Google Scholar · View at Scopus
  25. S. Hövel, A. Bischoff, N. C. Gerhardt et al., “Optical spin manipulation of electrically pumped vertical-cavity surface-emitting lasers,” Applied Physics Letters, vol. 92, no. 4, Article ID 041118, 2008. View at Publisher · View at Google Scholar · View at Scopus
  26. S. Iba, S. Koh, K. Ikeda, and H. Kawaguchi, “Room temperature circularly polarized lasing in an optically spin injected vertical-cavity surface-emitting laser with (110) GaAs quantum wells,” Applied Physics Letters, vol. 98, no. 8, Article ID 81113, 2011. View at Publisher · View at Google Scholar
  27. I. Žutić, J. Fabian, and S. D. Sarma, “Spintronics: fundamentals and applications,” Reviews of Modern Physics, vol. 76, no. 2, pp. 323–410, 2004. View at Publisher · View at Google Scholar · View at Scopus
  28. M. Oestreich, M. Bender, J. Hübner et al., “Spin injection, spin transport and spin coherence,” Semiconductor Science and Technology, vol. 17, no. 4, pp. 285–297, 2002. View at Publisher · View at Google Scholar · View at Scopus
  29. F. Meier and B. P. Zakharchenya, Optical Orientation. Modern Problems in Condensed Matter Sciences, vol. 8, North-Holland-Elsevier Science, New York, NY, USA, 1984.
  30. R. J. Elliott, “Theory of the effect of spin-Orbit coupling on magnetic resonance in some semiconductors,” Physical Review, vol. 96, no. 2, pp. 266–279, 1954. View at Publisher · View at Google Scholar · View at Scopus
  31. Y. Yafet, “Solid state physics,” in Advances in Research and Applications, F. Seitz and D. Turnbull, Eds., pp. 2–96, Academic Press, 1963. View at Google Scholar
  32. M. I. D‘Yakonov and V. I. Perel, “Optical orientation in a system of electrons and lattice nuclei in semiconductors. Theory,” Soviet Physics, vol. 38, pp. 177–183, 1974. View at Google Scholar
  33. G. Bir, A. Aronov, and G. Pikus, “Spin relaxation of electrons due to scattering by holes,” Soviet Physics, vol. 42, pp. 705–712, 1976. View at Google Scholar
  34. M. Dyakonov, Spin Physics in Semiconductors, Springer, 2008.
  35. R. I. Dzhioev, K. V. Kavokin, V. L. Korenev et al., “Low-temperature spin relaxation in n-type GaAs,” Physical Review B, vol. 66, no. 24, Article ID 245204, 7 pages, 2002. View at Google Scholar · View at Scopus
  36. A. V. Kimel, F. Bentivegna, V. N. Gridnev, V. V. Pavlov, R. V. Pisarev, and T. Rasing, “Room-temperature ultrafast carrier and spin dynamics in GaAs probed by the photoinduced magneto-optical Kerr effect,” Physical Review B, vol. 63, no. 23, Article ID 235201, 8 pages, 2001. View at Google Scholar · View at Scopus
  37. A. Malinowski, R. S. Britton, T. Grevatt, R. T. Harley, D. A. Ritchie, and M. Y. Simmons, “Spin relaxation in GaAs/AlMxGa1-xAs quantum wells,” Physical Review B, vol. 62, no. 19, pp. 13034–13039, 2000. View at Publisher · View at Google Scholar · View at Scopus
  38. J. Fabian, A. Matos-Abiague, C. Ertler, P. Stano, and I. Žutić, “Semiconductor spintronics,” Acta Physica Slovaca, vol. 57, no. 4-5, pp. 565–907, 2007. View at Google Scholar · View at Scopus
  39. D. J. Hilton and C. L. Tang, “Optical orientation and femtosecond relaxation of spin-polarized holes in GaAs,” Physical Review Letters, vol. 89, no. 14, Article ID 146601, 4 pages, 2002. View at Google Scholar · View at Scopus
  40. M. Holub, J. Shin, S. Chakrabarti, and P. Bhattacharya, “Electrically injected spin-polarized vertical-cavity surface-emitting lasers,” Applied Physics Letters, vol. 87, no. 9, Article ID 91108, pp. 1–3, 2005. View at Publisher · View at Google Scholar · View at Scopus
  41. M. Ramsteiner, H. Y. Hao, A. Kawaharazuka et al., “Electrical spin injection from ferromagnetic MnAs metal layers into GaAs,” Physical Review B, vol. 66, no. 8, Article ID 081304, 4 pages, 2002. View at Google Scholar · View at Scopus
  42. S. Saikin, M. Shen, and M. C. Cheng, “Spin dynamics in a compound semiconductor spintronic structure with a Schottky barrier,” Journal of Physics Condensed Matter, vol. 18, no. 5, pp. 1535–1544, 2006. View at Publisher · View at Google Scholar · View at Scopus
  43. H. Soldat, M. Li, N. C. Gerhardt et al., “Room temperature spin relaxation length in spin light-emitting diodes,” Applied Physics Letters, vol. 99, no. 5, Article ID 051102, 2011. View at Publisher · View at Google Scholar
  44. J. F. Gregg, I. Petej, E. Jouguelet, and C. Dennis, “Spin electronics—a review,” Journal of Physics D, vol. 35, no. 18, pp. R121–R155, 2002. View at Publisher · View at Google Scholar · View at Scopus
  45. G. Schmidt, D. Ferrand, L. W. Molenkamp, A. T. Filip, and B. J. Van Wees, “Fundamental obstacle for electrical spin injection from a ferromagnetic metal into a diffusive semiconductor,” Physical Review B, vol. 62, no. 8, pp. R4790–R4793, 2000. View at Google Scholar · View at Scopus
  46. E. I. Rashba, “Theory of electrical spin injection: tunnel contacts as a solution of the conductivity mismatch problem,” Physical Review B, vol. 62, no. 24, Article ID R16267, pp. R16267–R16270, 2000. View at Publisher · View at Google Scholar · View at Scopus
  47. A. Fert and H. Jaffrès, “Conditions for efficient spin injection from a ferromagnetic metal into a semiconductor,” Physical Review B, vol. 64, no. 18, Article ID 184420, 9 pages, 2001. View at Google Scholar · View at Scopus
  48. T. Dietl, H. Ohno, F. Matsukura, J. Cibert, and D. Ferrand, “Zener model description of ferromagnetism in zinc-blende magnetic semiconductors,” Science, vol. 287, no. 5455, pp. 1019–1022, 2000. View at Publisher · View at Google Scholar · View at Scopus
  49. M. L. Reed, N. A. El-Masry, H. H. Stadelmaier et al., “Room temperature ferromagnetic properties of (Ga, Mn)N,” Applied Physics Letters, vol. 79, no. 21, pp. 3473–3475, 2001. View at Publisher · View at Google Scholar · View at Scopus
  50. M. Tanaka, “Ferromagnet (MnAs)/III-V semiconductor hybrid structures,” Semiconductor Science and Technology, vol. 17, no. 4, pp. 327–341, 2002. View at Publisher · View at Google Scholar · View at Scopus
  51. H. Saito, S. Yamagata, and K. Ando, “Room-temperature ferromagnetism in a II-VI diluted magnetic semiconductor Zn1-xCrxTe,” Physical Review Letters, vol. 90, no. 20, Article ID 207202, 4 pages, 2003. View at Google Scholar · View at Scopus
  52. J. Philip, A. Punnoose, B. I. Kim et al., “Carrier-controlled ferromagnetism in transparent oxide semiconductors,” Nature Materials, vol. 5, no. 4, pp. 298–304, 2006. View at Publisher · View at Google Scholar · View at Scopus
  53. G. A. Medvedkin, T. Ishibashi, T. Nishi, K. Hayata, Y. Hasegawa, and K. Sato, “Room temperature ferromagnetism in novel diluted magnetic semiconductor Cd1-xMnxGeP2,” Japanese Journal of Applied Physics, vol. 39, no. 10 A, pp. L949–L951, 2000. View at Google Scholar · View at Scopus
  54. T. Dietl and H. Ohno, “Ferromagnetic III-V and II-VI semiconductors,” MRS Bulletin, vol. 28, no. 10, pp. 714–719, 2003. View at Google Scholar · View at Scopus
  55. T. Manago and H. Akinaga, “Spin-polarized light-emitting diode using metal/insulator/semiconductor structures,” Applied Physics Letters, vol. 81, no. 4, pp. 694–696, 2002. View at Publisher · View at Google Scholar · View at Scopus
  56. N. C. Gerhardt, S. Hövel, C. Brenner et al., “Spin injection light-emitting diode with vertically magnetized ferromagnetic metal contacts,” Journal of Applied Physics, vol. 99, no. 7, Article ID 073907, 2006. View at Publisher · View at Google Scholar · View at Scopus
  57. E. Schuster, R. A. Brand, F. Stromberg et al., “Epitaxial growth and interfacial magnetism of spin aligner for remanent spin injection: [Fe/Tb]n /Fe/MgO/GaAs -light emitting diode as a prototype system,” Journal of Applied Physics, vol. 108, no. 6, Article ID 063902, 2010. View at Publisher · View at Google Scholar · View at Scopus
  58. A. Ludwig, R. Roescu, A. K. Rai et al., “Electrical spin injection in InAs quantum dots at room temperature and adjustment of the emission wavelength for spintronic applications,” Journal of Crystal Growth, vol. 323, no. 1, pp. 376–379, 2011. View at Publisher · View at Google Scholar · View at Scopus
  59. A. Sinsarp, T. Manago, F. Takano, and H. Akinaga, “Electrical spin injection from out-of-plane magnetized FePt/MgO tunneling junction into GaAs at room temperature,” Japanese Journal of Applied Physics Part 2, vol. 46, no. 1–3, pp. L4–L6, 2007. View at Publisher · View at Google Scholar · View at Scopus
  60. L. Grenet, M. Jamet, P. Nó et al., “Spin injection in silicon at zero magnetic field,” Applied Physics Letters, vol. 94, no. 3, Article ID 032502, 2009. View at Publisher · View at Google Scholar · View at Scopus
  61. O. M. J. Van't Erve, G. Kioseoglou, A. T. Hanbicki, C. H. Li, and B. T. Jonker, “Remanent electrical spin injection from Fe into AIGaAs/GaAs light emitting diodes,” Applied Physics Letters, vol. 89, no. 7, Article ID 072505, 2006. View at Publisher · View at Google Scholar · View at Scopus
  62. M. J. Adams and D. Alexandropoulos, “Parametric analysis of spin-polarized VCSELs,” IEEE Journal of Quantum Electronics, vol. 45, no. 6, pp. 744–749, 2009. View at Publisher · View at Google Scholar · View at Scopus
  63. R. Oszwałdowski, C. Gøthgen, and I. Žutić, “Theory of quantum dot spin lasers,” Physical Review B, vol. 82, Article ID 85316, 2010. View at Google Scholar
  64. M. San Miguel, Q. Feng, and J. V. Moloney, “Light-polarization dynamics in surface-emitting semiconductor lasers,” Physical Review A, vol. 52, no. 2, pp. 1728–1739, 1995. View at Publisher · View at Google Scholar · View at Scopus
  65. A. Gahl, S. Balle, and M. San Miguel, “Polarization dynamics of optically pumped VCSEL's,” IEEE Journal of Quantum Electronics, vol. 35, no. 3, pp. 342–351, 1999. View at Google Scholar · View at Scopus
  66. J. Martin-Regalado, F. Prati, M. San Miguel, and N. B. Abraham, “Polarization properties of vertical-cavity surface-emitting lasers,” IEEE Journal of Quantum Electronics, vol. 33, no. 5, pp. 765–783, 1997. View at Google Scholar · View at Scopus
  67. C. Gøthgen, R. Oszwadowski, A. Petrou, and I. Žutić, “Analytical model of spin-polarized semiconductor lasers,” Applied Physics Letters, vol. 93, no. 4, Article ID 042513, 2008. View at Publisher · View at Google Scholar · View at Scopus
  68. D. Basu, D. Saha, C. C. Wu, M. Holub, Z. Mi, and P. Bhattacharya, “Electrically injected InAsGaAs quantum dot spin laser operating at 200 K,” Applied Physics Letters, vol. 92, no. 9, Article ID 091119, 2008. View at Publisher · View at Google Scholar · View at Scopus
  69. M. Travagnin, M. P. Van Exter, A. K. Jansen Van Doorn, and J. P. Woerdman, “Role of optical anisotropies in the polarization properties of surface-emitting semiconductor lasers,” Physical Review A, vol. 54, no. 2, pp. 1647–1660, 1996. View at Google Scholar · View at Scopus
  70. M. P. Van Exter, M. B. Willemsen, and J. P. Woerdman, “Polarization fluctuations in vertical-cavity semiconductor lasers,” Physical Review A, vol. 58, no. 5, pp. 4191–4205, 1998. View at Google Scholar · View at Scopus
  71. M. Sondermann, M. Weinkath, and T. Ackemann, “Polarization switching to the gain disfavored mode in vertical-cavity surface-emitting lasers,” IEEE Journal of Quantum Electronics, vol. 40, no. 2, pp. 97–104, 2004. View at Publisher · View at Google Scholar · View at Scopus
  72. M. B. Willemsen, M. P. Van Exter, and J. P. Woerdman, “Anatomy of a polarization switch of a vertical-cavity semiconductor laser,” Physical Review Letters, vol. 84, no. 19, pp. 4337–4340, 2000. View at Google Scholar · View at Scopus
  73. E. L. Blansett, M. G. Raymer, G. Khitrova et al., “Ultrafast polarization dynamics and noise in pulsed vertical-cavity surface-emitting lasers,” Optics Express, vol. 9, no. 6, pp. 312–318, 2001. View at Google Scholar · View at Scopus
  74. T. Ackemann and M. Sondermann, “Characteristics of polarization switching from the low to the high frequency mode in vertical-cavity surface-emitting lasers,” Applied Physics Letters, vol. 78, no. 23, pp. 3574–3576, 2001. View at Publisher · View at Google Scholar · View at Scopus
  75. R. Al-Seyab, D. Alexandropoulos, I. D. Henning, and M. J. Adams, “Instabilities in spin-polarized vertical-cavity surface-emitting lasers,” IEEE Photonics Journal, vol. 3, no. 5, pp. 799–809, 2011. View at Publisher · View at Google Scholar
  76. N. C. Gerhardt, M. Y. Li, H. Jähme, H. Höpfner, T. Ackemann, and M. R. Hofmann, “Ultrafast spin-induced polarization oscillations with tunable lifetime in vertical-cavity surface-emitting lasers,” Applied Physics Letters, vol. 99, no. 15, Article ID 151107, 2011. View at Publisher · View at Google Scholar
  77. K. Panajotov, B. Nagler, G. Verschaffelt et al., “Impact of in-plane anisotropic strain on the polarization behavior of vertical-cavity surface-emitting lasers,” Applied Physics Letters, vol. 77, no. 11, pp. 1590–1592, 2000. View at Google Scholar · View at Scopus
  78. K. Ikeda, T. Fujimoto, H. Fujino, and T. Katayama, “Switching of lasing circular polarizations in a (110)-VCSEL,” IEEE Photonics Technology Letters, vol. 21, no. 18, pp. 1350–1352, 2009. View at Publisher · View at Google Scholar · View at Scopus
  79. D. Hägele, M. Oestreich, M. Holub, and P. Bhattacharya, “Comment on “electrically injected spin-polarized vertical-cavity surface-emitting lasers” [Applied Physics Letters vol. 87, article 091108, 2005],” Applied Physics Letters, vol. 88, no. 5, Article ID 56101, p. 1, 2006. View at Publisher · View at Google Scholar · View at Scopus
  80. M. Holub and P. Bhattacharya, “Response to Comment on “Electrically injected spin-polarized vertical-cavity surface-emitting lasers“ [Applied Physics Letters, vol. 87, article 091108, 2005],” Applied Physics Letters, vol. 88, no. 5, Article ID 56102, p. 1, 2006. View at Publisher · View at Google Scholar · View at Scopus
  81. M. Holub, P. Bhattacharya, J. Shin, and D. Saha, “Electron spin injection from a regrown Fe layer in a spin-polarized vertical-cavity surface-emitting laser,” Journal of Crystal Growth, vol. 301-302, pp. 602–606, 2007. View at Publisher · View at Google Scholar · View at Scopus