Table of Contents Author Guidelines Submit a Manuscript
Advances in Optical Technologies
Volume 2012 (2012), Article ID 316045, 10 pages
http://dx.doi.org/10.1155/2012/316045
Research Article

Carrier Formation Dynamics of Organic Photovoltaics as Investigated by Time-Resolved Spectroscopy

1Graduate School of Pure and Applied Science, University of Tsukuba, Tsukuba 305-8571, Japan
2Tsukuba Research Center for Interdisciplinary Materials Science (TIMS), University of Tsukuba, Tsukuba 305-8571, Japan
3Photovoltaic Materials Unit, National Institute for Materials Science (NIMS), Tsukuba 305-0047, Japan

Received 9 April 2012; Accepted 17 May 2012

Academic Editor: Saulius Juodkazis

Copyright © 2012 Kouhei Yonezawa et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Hiramoto, H. Fujiwara, and M. Yokoyama, “Three-layered organic solar cell with a photoactive interlayer of codeposited pigments,” Applied Physics Letters, vol. 58, no. 10, pp. 1062–1064, 1991. View at Publisher · View at Google Scholar · View at Scopus
  2. N. S. Sariciftci, L. Smilowitz, A. J. Heeger, and F. Wudl, “Photoinduced electron transfer from a conducting polymer to buckminsterfullerene,” Science, vol. 258, no. 5087, pp. 1474–1476, 1992. View at Google Scholar · View at Scopus
  3. G. Grancini, D. Polli, D. Fazzi, J. Cabanillas-Gonzalez, G. Cerullo, and G. Lanzani, “Transient absorption imaging of P3HT:PCBM photovoltaic blend: evidence for interfacial charge transfer state,” Journal of Physical Chemistry Letters, vol. 2, no. 9, pp. 1099–1105, 2011. View at Publisher · View at Google Scholar · View at Scopus
  4. I.-W. Hwang, D. Moses, and A. J. Heeger, “Photoinduced carrier generation in P3HT/PCBM bulk heterojunction materials,” Journal of Physical Chemistry C, vol. 112, no. 11, pp. 4350–4354, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. S. Trotzky, T. Hoyer, W. Tuszynski, C. Lienau, and J. Parisi, “Femtosecond up-conversion technique for probing the charge transfer in a P3HT : PPCBM blend via photoluminescence quenching,” Journal of Physics D, vol. 42, no. 5, Article ID 055105, 2009. View at Publisher · View at Google Scholar · View at Scopus
  6. J. Guo, H. Ohkita, H. Benten, and S. Ito, “Near-IR femtosecond transient absorption spectroscopy of ultrafast polaron and triplet exciton formation in polythiophene films with different regioregularities,” Journal of the American Chemical Society, vol. 131, no. 46, pp. 16869–16880, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. J. Guo, H. Ohkita, H. Benten, and S. Ito, “Charge generation and recombination dynamics in poly(3-hexylthiophene)/ fullerene blend films with different regioregularities and morphologies,” Journal of the American Chemical Society, vol. 132, no. 17, pp. 6154–6164, 2010. View at Publisher · View at Google Scholar · View at Scopus
  8. R. Alex Marsh, J. M. Hodgkiss, S. Albert-Seifried, and R. H. Friend, “Effect of annealing on P3HT:PCBM charge transfer and nanoscale morphology probed by ultrafast spectroscopy,” Nano Letters, vol. 10, no. 3, pp. 923–930, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. J. Piris, T. E. Dykstra, A. A. Bakulin et al., “Photogeneration and ultrafast dynamics of excitons and charges in P3HT/PCBM blends,” Journal of Physical Chemistry C, vol. 113, no. 32, pp. 14500–14506, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. I. A. Howard, R. Mauer, M. Meister, and F. Laquai, “Effect of morphology on ultrafast free carrier generation in polythiophene: fullerene organic solar cells,” Journal of the American Chemical Society, vol. 132, no. 42, pp. 14866–14876, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. S. Cook, R. Katoh, and A. Furube, “Ultrafast studies of charge generation in PCBM: P3HT blend films following excitation of the fullerene PCBM,” Journal of Physical Chemistry C, vol. 113, no. 6, pp. 2547–2552, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. S. Cook, A. Furube, and R. Katoh, “Analysis of the excited states of regioregular polythiophene P3HT,” Energy and Environmental Science, vol. 1, no. 2, pp. 294–299, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. W. Ma, C. Yang, X. Gong, K. Lee, and A. J. Heeger, “Thermally stable, efficient polymer solar cells with nanoscale control of the interpenetrating network morphology,” Advanced Functional Materials, vol. 15, no. 10, pp. 1617–1622, 2005. View at Publisher · View at Google Scholar · View at Scopus
  14. Y. Kim, S. Cook, S. M. Tuladhar et al., “A strong regioregularity effect in self-organizing conjugated polymer films and high-efficiency polythiophene:fullerene solar cells,” Nature Materials, vol. 5, no. 3, pp. 197–203, 2006. View at Publisher · View at Google Scholar · View at Scopus
  15. O. J. Korovyanko, R. Osterbacka, X. M. Jiang, and Z. V. Vardeny, “Theory of the electronic structure of the alloys of the actinides,” Physical Review B, vol. 64, no. 23, Article ID 235122, 10 pages, 2001. View at Publisher · View at Google Scholar
  16. X. M. Jiang, R. Osterbacka, O. Korovyanko et al., “Spectroscopic studies of photoexcitations in regioregular and regiorandom polythiophene films,” Advanced Functional Materials, vol. 12, no. 9, pp. 587–597, 2002. View at Publisher · View at Google Scholar
  17. T. Yasuda, K. Yonezawa, M. Ito, H. Kamioka, L. Han, and Y. Moritomo, “Photovoltaic properties and charge dynamics in nanophase-separated F8T2/PCBM blend films,” Journal of Photopolymer Science and Technology. In press.
  18. J.-H. Huang, C.-P. Lee, Z.-Y. Ho, D. Kekuda, C.-W. Chu, and K.-C. Ho, “Enhanced spectral response in polymer bulk heterojunction solar cells by using active materials with complementary spectra,” Solar Energy Materials and Solar Cells, vol. 94, no. 1, pp. 22–28, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. K. Yonezawa, H. Kamioka, T. Yasuda, L. Han, and Y. Moritomo, “Charge-transfer state and charge dynamics in poly(9, 9-dioctylfluorene-co-bithiophene) and [6, 6]-phenyl C70-butyric acid methyl ester blend film,” Applied Physics Express, vol. 4, no. 12, Article ID 122601, 2011. View at Google Scholar
  20. H. Kamioka, Y. Moritomo, W. Kosaka, and S. Ohkoshi, “Charge-transfer dynamics in cyano-bridged MA–Fe system (MA = Mn, Fe, and Co),” Journal of the Physical Society of Japan, vol. 77, no. 9, Article ID 093710, 2008. View at Publisher · View at Google Scholar · View at Scopus
  21. R. Lim, B.-J. Jung, M. Chikamatsu et al., “Doping effect of solution-processed thin-film transistors based on polyfluorene,” Journal of Materials Chemistry, vol. 17, no. 14, pp. 1416–1420, 2007. View at Publisher · View at Google Scholar · View at Scopus
  22. P. Ravirajan, S. A. Haque, D. Poplavskyy, J. R. Durrant, D. D. C. Bradley, and J. Nelson, “Nanoporous TiO2 solar cells sensitised with a fluorene-thiophene copolymer,” Thin Solid Films, vol. 451-452, pp. 624–629, 2004. View at Publisher · View at Google Scholar · View at Scopus
  23. C. H. Poh, L. Rosa, S. Juodkazis, and P. Dastoor, “FDTD modeling to enhance the performance of an organic solar cell embedded with gold nanoparticle,” Optical Materials Express, vol. 1, pp. 1326–1331, 2011. View at Publisher · View at Google Scholar