Table of Contents
Advances in Optical Technologies
Volume 2013, Article ID 532670, 8 pages
http://dx.doi.org/10.1155/2013/532670
Research Article

Detection of Nitroaromatic and Peroxide Explosives in Air Using Infrared Spectroscopy: QCL and FTIR

Department of Chemistry, ALERT-DHS Center of Excellence, Center for Chemical Sensors Development, University of Puerto Rico at Mayagüez, P.O. Box 9000, Mayagüez, PR 00681-9000, USA

Received 4 October 2012; Revised 26 February 2013; Accepted 11 March 2013

Academic Editor: Augusto Belendez

Copyright © 2013 Leonardo C. Pacheco-Londoño et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

A methodology for processing spectroscopic information using a chemometrics-based analysis was designed and implemented in the detection of highly energetic materials (HEMs) in the gas phase at trace levels. The presence of the nitroaromatic HEM 2,4-dinitrotoluene (2,4-DNT) and the cyclic organic peroxide triacetone triperoxide (TATP) in air was detected by chemometrics-enhanced vibrational spectroscopy. Several infrared experimental setups were tested using traditional heated sources (globar), modulated and nonmodulated FT-IR, and quantum cascade laser- (QCL-) based dispersive IR spectroscopy. The data obtained from the gas phase absorption experiments in the midinfrared (MIR) region were used for building the chemometrics models. Partial least-squares discriminant analysis (PLS-DA) was used to generate pattern recognition schemes for trace amounts of explosives in air. The QCL-based methodology exhibited a better capacity of discrimination for the detected presence of HEM in air compared to other methodologies.