Table of Contents
Advances in Optical Technologies
Volume 2013, Article ID 532670, 8 pages
http://dx.doi.org/10.1155/2013/532670
Research Article

Detection of Nitroaromatic and Peroxide Explosives in Air Using Infrared Spectroscopy: QCL and FTIR

Department of Chemistry, ALERT-DHS Center of Excellence, Center for Chemical Sensors Development, University of Puerto Rico at Mayagüez, P.O. Box 9000, Mayagüez, PR 00681-9000, USA

Received 4 October 2012; Revised 26 February 2013; Accepted 11 March 2013

Academic Editor: Augusto Belendez

Copyright © 2013 Leonardo C. Pacheco-Londoño et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. S. Moore, “Instrumentation for trace detection of high explosives,” Review of Scientific Instruments, vol. 75, no. 8, pp. 2499–2512, 2004. View at Publisher · View at Google Scholar · View at Scopus
  2. D. S. Moore, “Recent advances in trace explosives detection instrumentation,” Sensing and Imaging, vol. 8, no. 1, pp. 9–38, 2007. View at Publisher · View at Google Scholar · View at Scopus
  3. J. M. Sylvia, J. A. Janni, J. D. Klein, and K. M. Spencer, “Surface-enhanced Raman detection of 2,4-dinitrotoluene impurity vapor as a marker to locate landmines,” Analytical Chemistry, vol. 72, no. 23, pp. 5834–5840, 2000. View at Publisher · View at Google Scholar · View at Scopus
  4. K. J. Albert and D. R. Walt, “High-speed fluorescence detection of explosives-like vapors,” Analytical Chemistry, vol. 72, no. 9, pp. 1947–1955, 2000. View at Google Scholar · View at Scopus
  5. E. R. Menzel, L. W. Menzel, and J. R. Schwierking, “A photoluminescence-based field method for detection of traces of explosives,” The Scientific World Journal, vol. 4, pp. 725–735, 2004. View at Google Scholar · View at Scopus
  6. Y. Salinas, R. Martínez-Máñez, M. D. Marcos et al., “Optical chemosensors and reagents to detect explosives,” Chemical Society Reviews, vol. 41, no. 3, pp. 1261–1296, 2012. View at Publisher · View at Google Scholar
  7. Y. Salinas, A. Agostini, É. Pérez-Esteve et al., “Fluorogenic detection of Tetryl and TNT explosives using nanoscopic-capped mesoporous hybrid materials,” Journal of Materials Chemistry A, vol. 1, no. 11, pp. 3561–3564, 2013. View at Google Scholar
  8. G. K. Kannan, A. T. Nimal, U. Mittal, R. D. S. Yadava, and J. C. Kapoor, “Adsorption studies of carbowax coated surface acoustic wave (SAW) sensor for 2,4-dinitro toluene (DNT) vapour detection,” Sensors and Actuators B, vol. 101, no. 3, pp. 328–334, 2004. View at Publisher · View at Google Scholar · View at Scopus
  9. R. Batlle, H. Carlsson, P. Tollbäck, A. Colmsjö, and C. Crescenzi, “Enhanced detection of nitroaromatic explosive vapors combining solid-phase extraction-air sampling, supercritical fluid extraction, and large-volume injection-GC,” Analytical Chemistry, vol. 75, no. 13, pp. 3137–3144, 2003. View at Publisher · View at Google Scholar · View at Scopus
  10. C. Sánchez, H. Carlsson, A. Colmsjö, C. Crescenzi, and R. Batlle, “Determination of nitroaromatic compounds in air samples at femtogram level using C18 membrane sampling and on-line extraction with LC-MS,” Analytical Chemistry, vol. 75, no. 17, pp. 4639–4645, 2003. View at Publisher · View at Google Scholar · View at Scopus
  11. R. Schulte-Ladbeck and U. Karst, “Determination of triacetonetriperoxide in ambient air,” Analytica Chimica Acta, vol. 482, no. 2, pp. 183–188, 2003. View at Publisher · View at Google Scholar · View at Scopus
  12. J. I. Steinfeld and J. Wormhoudt, “Explosives detection: a challenge for physical chemistry,” Annual Review of Physical Chemistry, vol. 49, no. 1, pp. 203–232, 1998. View at Google Scholar · View at Scopus
  13. J. J. Perez, P. M. Flanigan, J. J. Brady, and R. J. Levis, “Classification of smokeless powders using laser electrospray mass spectrometry and offline multivariate statistical analysis,” Analytical Chemistry, vol. 85, no. 1, pp. 296–302, 2013. View at Publisher · View at Google Scholar
  14. F. C. de Lucia Jr. and J. L. Gottfried, “Influence of variable selection on partial least squares discriminant analysis models for explosive residue classification,” Spectrochimica Acta B, vol. 66, no. 2, pp. 122–128, 2011. View at Publisher · View at Google Scholar · View at Scopus
  15. J. K. V. Mardia, J. T. Kent, and J. M. Biby, Chemometrics: Statistic and Computer Application in Analytical Chemistry, Academic Press, London, UK, 1980.
  16. K. R. Beebe, R. J. Pell, and M. B. Seasholtz, Chemometrics. A Pactricla Guide, John Wiley & Sons, New York, NY, USA, 1998.
  17. C. J. Huberty, Applied Discriminant Analysis, Wiley-Interscience, Hoboken, NJ, USA, 1994.
  18. Y. M. Kim, J. F. MacGregor, and L. K. Kostanski, “Principal component analysis of FT-IR spectra for cationic photopolymerization of mixtures of two monomers,” Chemometrics and Intelligent Laboratory Systems, vol. 75, no. 1, pp. 77–90, 2005. View at Publisher · View at Google Scholar · View at Scopus
  19. U. G. Indahl, N. S. Sahni, B. Kirkhus, and T. Næs, “Multivariate strategies for classification based on NIR-spectra-with application to mayonnaise,” Chemometrics and Intelligent Laboratory Systems, vol. 49, no. 1, pp. 19–31, 1999. View at Publisher · View at Google Scholar · View at Scopus
  20. Y. Tan, L. Shi, W. Tong, G. T. G. Hwang, and C. Wang, “Multi-class tumor classification by discriminant partial least squares using microarray gene expression data and assessment of classification models,” Computational Biology and Chemistry, vol. 28, no. 3, pp. 235–244, 2004. View at Publisher · View at Google Scholar · View at Scopus
  21. B. Lindholm-Sethson, S. Han, S. Ollmar et al., “Multivariate analysis of skin impedance data in long-term type 1 diabetic patients,” Chemometrics and Intelligent Laboratory Systems, vol. 44, no. 1-2, pp. 381–394, 1998. View at Publisher · View at Google Scholar · View at Scopus
  22. Q. P. He, S. J. Qin, and J. Wang, “A new fault diagnosis method using fault directions in Fisher discriminant analysis,” AIChE Journal, vol. 51, no. 2, pp. 555–571, 2005. View at Publisher · View at Google Scholar · View at Scopus
  23. L. C. Pacheco-Londoño, W. Ortiz-Rivera, O. M. Primera-Pedrozo, and S. P. Hernández-Rivera, “Vibrational spectroscopy standoff detection of explosives,” Analytical and Bioanalytical Chemistry, vol. 395, no. 2, pp. 323–335, 2009. View at Publisher · View at Google Scholar · View at Scopus
  24. G. A. Buttigieg, A. K. Knight, S. Denson, C. Pommier, and M. B. Denton, “Characterization of the explosive triacetone triperoxide and detection by ion mobility spectrometry,” Forensic Science International, vol. 135, no. 1, pp. 53–59, 2003. View at Publisher · View at Google Scholar · View at Scopus
  25. B. Brauer, F. Dubnikova, Y. Zeiri, R. Kosloff, and R. B. Gerber, “Vibrational spectroscopy of triacetone triperoxide (TATP): anharmonic fundamentals, overtones and combination bands,” Spectrochimica Acta A, vol. 71, no. 4, pp. 1438–1445, 2008. View at Publisher · View at Google Scholar · View at Scopus