Table of Contents Author Guidelines Submit a Manuscript
Research Letters in Physical Chemistry
Volume 2008 (2008), Article ID 504917, 4 pages
http://dx.doi.org/10.1155/2008/504917
Research Letter

Homogenization of Mutually Immiscible Polymers Using Nanoscale Effects: A Theoretical Study

1New Materials Department, CIDETEC, Paseo Miramón 196, 20009 Donostia-San Sebastián, Spain
2Departament of Polymer Science and Technology, Faculty of Chemistry and Polymat, UPV/EHU, P.O. Box 1072, 20018 Donostia-San Sebastián, Spain

Received 21 January 2008; Accepted 9 May 2008

Academic Editor: Liming Dai

Copyright © 2008 Sarah Montes et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. C. Balazs, T. Emrick, and T. P. Russell, “Nanoparticle polymer composites: where two small worlds meet,” Science, vol. 314, no. 5802, pp. 1107–1110, 2006. View at Publisher · View at Google Scholar
  2. E. Ochoteco, N. Murillo, J. Rodriguez, J. A. Pomposo, and H. Grande, “Conducting polymer-based electrochemical sensors,” in Encyclopedia of Sensors, vol. 2, pp. 259–278, American Scientific Publishers, Stevenson Ranch, Calif, USA, 2006. View at Google Scholar
  3. X. Wang, J. E. Hall, S. Warren et al., “Synthesis, characterization, and application of novel polymeric nanoparticles,” Macromolecules, vol. 40, no. 3, pp. 499–508, 2007. View at Publisher · View at Google Scholar
  4. A. Tuteja, P. M. Duxbury, and M. E. Mackay, “Multifunctional nanocomposites with reduced viscosity,” Macromolecules, vol. 40, no. 26, pp. 9427–9434, 2007. View at Publisher · View at Google Scholar
  5. M. E. Mackay, T. T. Dao, A. Tuteja et al., “Nanoscale effects leading to non-Einstein-like decrease in viscosity,” Nature Materials, vol. 2, no. 11, pp. 762–766, 2003. View at Publisher · View at Google Scholar
  6. A. Tuteja, M. E. Mackay, S. Narayanan, S. Asokan, and M. S. Wong, “Breakdown of the continuum Stokes-Einstein relation for nanoparticle diffusion,” Nano Letters, vol. 7, no. 5, pp. 1276–1281, 2007. View at Publisher · View at Google Scholar
  7. F. Brochard Wyart and P. G. de Gennes, “Viscosity at small scales in polymer melts,” The European Physical Journal E, vol. 1, no. 1, pp. 93–97, 2000. View at Publisher · View at Google Scholar
  8. J. A. Pomposo, A. Ruiz de Luzuriaga, A. Etxeberria, and J. Rodríguez, “Key role of entropy in nanoparticle dispersion: polystyrene-nanoparticle/ linear-polystyrene nanocomposites as a model system,” Physical Chemistry Chemical Physics, vol. 10, no. 5, pp. 650–651, 2008. View at Publisher · View at Google Scholar
  9. A. Ruiz de Luzuriaga, A. Etxeberria, J. Rodríguez, and J. A. Pomposo, “Phase diagram and entropic interaction parameter of athermal all-polymer nanocomposites,” Polymers for Advanced Technologies. In press. View at Publisher · View at Google Scholar
  10. A. Ruiz de Luzuriaga, H. Grande, and J. A. Pomposo, “A theoretical investigation of polymer nanoparticles as miscibility improvers in all-polymer nanocomposites,” Journal of Nano Research, In press.
  11. T. P. Russell, R. P. Hjelm Jr., and P. A. Seeger, “Temperature dependence of the interaction parameter of polystyrene and poly(methyl methacrylate),” Macromolecules, vol. 23, no. 3, pp. 890–893, 1990. View at Publisher · View at Google Scholar
  12. T. P. Russell, “Changes in polystyrene and poly(methyl methacrylate) interactions with isotopic substitution,” Macromolecules, vol. 26, no. 21, p. 5819, 1993. View at Publisher · View at Google Scholar
  13. T. A. Callaghan and D. R. Paul, “Interaction energies for blends of poly(methyl methacrylate), polystyrene, and poly(α-methyl styrene) by the critical molecular weight method,” Macromolecules, vol. 26, no. 10, pp. 2439–2450, 1993. View at Publisher · View at Google Scholar
  14. V. V. Ginzburg, “Influence of nanoparticles on miscibility of polymer blends. A simple theory,” Macromolecules, vol. 38, no. 6, pp. 2362–2367, 2005. View at Publisher · View at Google Scholar