Table of Contents
Research Letters in Physical Chemistry
Volume 2009, Article ID 614362, 4 pages
Research Letter

Oxidation of Quercetin by Myeloperoxidase

Laboratory of Physical Chemistry, Vinča Institute of Nuclear Sciences, P.O. Box 522, 11001 Belgrade, Serbia

Received 3 February 2009; Accepted 12 March 2009

Academic Editor: Benjaram M. Reddy

Copyright © 2009 Tatjana Momić et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. L. Magnani, E. M. Gaydou, and J. C. Hubaud, “Spectrophotometric measurement of antioxidant properties of flavones and flavonols against superoxide anion,” Analytica Chimica Acta, vol. 411, no. 1-2, pp. 209–216, 2000. View at Publisher · View at Google Scholar
  2. N. Cotelle, J.-L. Bernier, J.-P. Catteau, J. Pommery, J.-C. Wallet, and E. M. Gaydou, “Antioxidant properties of hydroxy-flavones,” Free Radical Biology and Medicine, vol. 20, no. 1, pp. 35–43, 1996. View at Publisher · View at Google Scholar
  3. D. Metodiewa, A. K. Jaiswal, N. Cenas, E. Dickancaité, and J. Segura-Aguilar, “Quercetin may act as a cytotoxic prooxidant after its metabolic activation to semiquinone and quinoidal product,” Free Radical Biology and Medicine, vol. 26, no. 1-2, pp. 107–116, 1999. View at Publisher · View at Google Scholar
  4. H. Yamasaki, Y. Sakihama, and N. Ikehara, “Flavonoid-peroxidase reaction as a detoxification mechanism of plant cells against H2O2,” Plant Physiology, vol. 115, no. 4, pp. 1405–1412, 1997. View at Google Scholar
  5. G. Galati, T. Chan, B. Wu, and P. J. O'Brien, “Glutathione-dependent generation of reactive oxygen species by the peroxidase-catalyzed redox cycling of flavonoids,” Chemical Research in Toxicology, vol. 12, no. 6, pp. 521–525, 1999. View at Publisher · View at Google Scholar
  6. D. P. Makris and J. T. Rossiter, “An investigation on structural aspects influencing product formation in enzymic and chemical oxidation of quercetin and related flavonols,” Food Chemistry, vol. 77, no. 2, pp. 177–185, 2002. View at Publisher · View at Google Scholar
  7. U. Takahama, “Spectrophotometric study on the oxidation of rutin by horseradish peroxidase and characteristics of the oxidized products,” Biochimica et Biophysica Acta, vol. 882, no. 3, pp. 445–451, 1986. View at Publisher · View at Google Scholar
  8. S. J. Klebanoff, “Myeloperoxidase,” Proceedings of the Association of American Physicians, vol. 111, no. 5, pp. 383–389, 1999. View at Google Scholar
  9. J. K. Hurst, “Myeloperoxidase: active site structure and catalytic mechanism,” in Peroxidases in Chemistry and Biology, J. Everse, K. E. Everse, and M. B. Grisham, Eds., pp. 37–62, CRC Press, Boca Raton, Fla, USA, 1991. View at Google Scholar
  10. E. Shacter, R. L. Lopez, and S. Pati, “Inhibition of the myeloperoxidase-H2O2-Cl-system of neutrophils by indometacin and other non-steroidal anti-inflammatory drugs,” Biochemical Pharmacology, vol. 41, no. 6-7, pp. 975–984, 1991. View at Publisher · View at Google Scholar
  11. A. J. Kettle, C. A. Gedye, M. B. Hampton, and C. C. Winterbourn, “Inhibition of myeloperoxidase by benzoic acid hydrazides,” Biochemical Journal, vol. 308, no. 2, pp. 559–563, 1995. View at Google Scholar
  12. R. L. Olsen and C. Little, “Purification and some properties of myeloperoxidase and eosinophil peroxidase from human blood,” Biochemical Journal, vol. 209, no. 3, pp. 781–787, 1983. View at Google Scholar
  13. T. Odajima and I. Yamazaki, “Myeloperoxidase of the leukocyte of normal blood—I: reaction of myeloperoxidase with hydrogen peroxide,” Biochimica et Biophysica Acta, vol. 206, no. 1, pp. 71–77, 1970. View at Google Scholar
  14. R. J. Beers Jr. and I. W. Sizer, “A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase,” Journal of Biological Chemistry, vol. 195, no. 1, pp. 133–140, 1952. View at Google Scholar
  15. O. Dangles, C. Dufour, and S. Bret, “Flavonol-serum albumin complexation. Two-electron oxidation of flavonols and their complexes with serum albumin,” Journal of the Chemical Society Perkin Transactions, vol. 2, no. 4, pp. 737–744, 1999. View at Publisher · View at Google Scholar
  16. H. E. Hajji, E. Nkhili, V. Tomao, and O. Dangles, “Interactions of quercetin with iron and copper ions: complexation and autoxidation,” Free Radical Research, vol. 40, no. 3, pp. 303–320, 2006. View at Publisher · View at Google Scholar
  17. T. Momić, J. Savić, U. Černigoj, P. Trebše, and V. Vasić, “Protolytic equilibria and photodegradation of quercetin in aqueous solution,” Collection of Czechoslovak Chemical Communications, vol. 72, no. 11, pp. 1447–1460, 2007. View at Publisher · View at Google Scholar