Table of Contents
Advances in Physical Chemistry
Volume 2016, Article ID 6737494, 7 pages
Research Article

A Group Theoretical and Quantum Chemical Study of Electronic Absorption and Fluorescence, Vibrational Spectra, and Conformations of Trimethine Cyanine Dye Molecules

1Department of General and Theoretical Physics, Sumy State University, 2 Rimsky-Korsakov Street, Sumy 40007, Ukraine
2Department of Theoretical Physics, Aerospace Institute, National Aviation University, 1 Kosmonavta Komarova Prospekt, Kiev 03680, Ukraine

Received 13 October 2015; Revised 30 November 2015; Accepted 8 December 2015

Academic Editor: Sergei Tretiak

Copyright © 2016 Vita Solomko et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. M. Hales, J. Matichak, S. Barlow et al., “Design of polymethine dyes with large third-order optical nonlinearities and loss figures of merit,” Science, vol. 327, no. 5972, pp. 1485–1488, 2010. View at Publisher · View at Google Scholar · View at Scopus
  2. A. Mishra, R. K. Behera, P. K. Behera, B. K. Mishra, and G. B. Behera, “Cyanines during the 1990s: a review,” Chemical Reviews, vol. 100, no. 6, pp. 1973–2012, 2000. View at Publisher · View at Google Scholar · View at Scopus
  3. N. Peyghambarian, L. Dalton, J. Alex et al., “Technological advances brighten horizons for organic nonlinear optics,” Laser Focus World, vol. 42, no. 8, pp. 85–92, 2006. View at Google Scholar · View at Scopus
  4. T. D. Iordanov, J. L. Davis, A. M. E. Masunov, A. Levenson, O. V. Przhonska, and A. D. Kachkovski, “Symmetry breaking in cationic polymethine dyes, part 1: ground state potential energy surfaces and solvent effects on electronic spectra of streptocyanines,” International Journal of Quantum Chemistry, vol. 109, no. 15, pp. 3592–3601, 2009. View at Publisher · View at Google Scholar · View at Scopus
  5. O. V. Przhonska, S. Webster, L. A. Padilha et al., Advanced Fluorescence Reporters in Chemistry and Biology I: Fundamentals and Molecular Design, Springer Series in Fluorescence, Springer, Berlin, Germany, 2010.
  6. I. G. Davidenko, Yu. L. Slominskiy, A. D. Kachkovskiy, and A. I. Tolmachev, “Polymethine dyes—the derivatives of 7,8-dihydrobenzo [cd]-furo [2,3-f] indole,” Ukrainian Chemical Journal, vol. 74, no. 4, pp. 105–113, 2008 (Russian). View at Google Scholar
  7. A. V. Kulinich and A. A. Ischenko, “Merotsianinovyie krasiteli: sintez, stroenie, svoystva, primenenie,” Uspehi himii, vol. 78, no. 2, pp. 151–175, 2009 (Russian). View at Google Scholar
  8. A. H. Tarnovskiy, T. K. Razumova, E. P. Schelkina, and T. V. Veselova, “Photophysical, photochemical, and lasing characteristics of symmetric and asymmetric di- and trikarbotsianin dyes,” Optics and Spectroscopy, vol. 74, pp. 107–115, 1993 (Russian). View at Google Scholar
  9. M. J. S. Dewar, E. G. Zoebisch, E. F. Healy, and J. J. P. Stewart, “AM1: a new general purpose quantum mechanical molecular model,” Journal of the American Chemical Society, vol. 107, no. 13, pp. 3902–3909, 1985. View at Publisher · View at Google Scholar · View at Scopus
  10. P. A. Kondratenko, S. Y. Lopatkin, Y. M. Lopatkin, and T. N. Sakun, “Fotoelektricheskie svoystva polimernyih sloyov s krasitelyami,” Visnik Sums'kogo Derzhavnogo Universitetu, vol. 1, pp. 145–153, 2007 (Russian). View at Google Scholar
  11. P. O. Kondratenko, Yu. M. Lopatkin, and T. M. Sakun, “Quasi-equilibrium processes in the high excited molecules of resazurin,” Journal of Nano- and Electron Physics, vol. 4, no. 2, Article ID 02017, 7 pages, 2012 (Ukraine).
  12. P. O. Kondratenko, Yu. M. Lopatkin, and T. M. Sakun, “Relaxation processes in the high-excited molecules of resazurin,” Physics and Chemistry of Solid State, vol. 8, no. 1, pp. 100–108, 2007 (Ukrainian).
  13. R. J. Cave, K. Burke, and E. W. Castner Jr., “Theoretical investigation of the ground and excited states of coumarin 151 and coumarin 120,” Journal of Physical Chemistry A, vol. 106, no. 40, pp. 9294–9305, 2002. View at Publisher · View at Google Scholar · View at Scopus
  14. S. Kumar, S. K. Jain, and R. C. Rastogi, “An experimental and theoretical study of excited-state dipole moments of some flavones using an efficient solvatochromic method based on the solvent polarity parameter, ETN,” Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, vol. 57, no. 2, pp. 291–298, 2001. View at Publisher · View at Google Scholar
  15. D. Peceli, H. Hu, D. A. Fishman et al., “Enhanced intersystem crossing rate in polymethine-like molecules: sulfur-containing squaraines versus oxygen-containing analogues,” Journal of Physical Chemistry A, vol. 117, no. 11, pp. 2333–2346, 2013. View at Publisher · View at Google Scholar · View at Scopus
  16. V. I. Zemskiy, Y. U. L. Kolesnikov, and I. K. Meshkovskiy, Physics and Technology of Pulsed Dye Lasers, Petersburg State University of Information Technologies, Saint Petersburg, Russia, 2005 (Russian).
  17. S. Webster, L. A. Padilha, H. Hu et al., “Structure and linear spectroscopic properties of near IR polymethine dyes,” Journal of Luminescence, vol. 128, no. 12, pp. 1927–1936, 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. G. G. Dyadyusha, O. V. Przhonskaya, Y. A. Tikhonov, and M. T. Shpak, “The fluorescence intensity out the second excited state of molecular solutions of organic dyes,” Journal of Experimental and Theoretical Physics, vol. 1, no. 14, pp. 330–333, 2008 (Russian). View at Google Scholar