Table of Contents
Advances in Power Electronics
Volume 2011, Article ID 925618, 10 pages
http://dx.doi.org/10.1155/2011/925618
Research Article

A Zero-Voltage-Transition Interleaved Boost Converter and Its Application to PFC

Electrical Engineering Department, State University of Londrina, P.O. Box 6001, 86051-990 Londrina, PR, Brazil

Received 30 June 2011; Revised 26 August 2011; Accepted 13 September 2011

Academic Editor: Jose Pomilio

Copyright © 2011 Lúcio dos Reis Barbosa. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Kazerani, P. D. Ziogas, and G. Joos, “A novel active current waveshaping technique for solid-state input power factor conditioners,” IEEE Transactions on Industrial Electronics, vol. 38, no. 1, pp. 72–78, 1991. View at Publisher · View at Google Scholar · View at Scopus
  2. M. Kazerani, P. Ziogas, and G. Joos, “Programmable input power factor correction methods for single phase diode rectifier circuits,” in Proceedings of the 5th Annual Applied Power Electronics Conference and Exposition (APEC '90), pp. 177–184, Los Angeles, Calif, USA, 1990. View at Publisher · View at Google Scholar
  3. A. R. Prasad, P. D. Ziogas, and S. Manias, “An active power factor correction technique for three-phase diode rectifiers,” IEEE Transactions on Power Electronics, vol. 6, no. 1, pp. 83–92, 1991. View at Publisher · View at Google Scholar · View at Scopus
  4. C. Duarte and I. Barbi, “A new ZVS-PWM active-clamping high power factor rectifier: analysis, design, and experimentation,” in Conference Proceedings of the 13th Annual Applied Power Electronics Conference and Exposition (APEC '98), pp. 230–236, 1998. View at Publisher · View at Google Scholar
  5. A. Costa, C. Treviso, and L. Freitas, “New ZCS-ZVS-PWM boost converter with unity power factor operation,” in Proceedings of the 9th Annual Applied Power Electronics Conference and Exposition (PESC '94), pp. 404–410, Orlando, Fla, USA, 1994. View at Publisher · View at Google Scholar
  6. D. Xu, C. Yang, L. Ma, C. Qiao, Z. Qian, and X. He, “A novel single-phase active-clamped PFC converter,” in Proceedings of the IEEE 12th Applied Power Electronics Conference (APEC '97), pp. 266–271, Atlanta, Ga, USA, February 1997. View at Publisher · View at Google Scholar
  7. S. Gataric, D. Boroyevich, and F. Lee, “Soft-switched single-switch three-phase rectifier with power factor correction,” in Proceedings of the 9th Annual Applied Power Electronics Conference and Exposition (APEC '94), pp. 738–744, Orlando, Fla, USA, 1994. View at Publisher · View at Google Scholar
  8. C. Canesin and I. Barbi, “A novel single-phase ZCS-PWM high power factor boost rectifier,” in Proceedings of the 28th Annual IEEE Power Electronics Specialists Conference (PESC '97), pp. 110–114, 1997.
  9. F. Wakabayashi and C. Canesin, “New family of zero-current-switching PWM converters and a novel HPF-ZCS-PWM boost rectifier,” in Proceedings of the 14th annual Applied Power Electronics Conference and Exposition (APEC '99), pp. 605–611, 1999.
  10. A. de Souza and I. Barbi, “A new ZVS-PWM unity power factor rectifier with reduced conduction losses,” IEEE Transactions on Power Electronics, vol. 10, no. 6, pp. 746–752, 1995. View at Publisher · View at Google Scholar · View at Scopus
  11. A. de Souza and I. Barbi, “A new ZCS quasi-resonant unity power factor rectifier with reduced conduction losses,” in Proceedings of the 26th Annual IEEE Power Electronics Specialists Conference (PESC '95), pp. 1171–1177, 1995.
  12. E. Calkin and B. Hamilton, “Circuit techniques for improving the switching loci of transistor switches in switching regulators,” IEEE Transactions on Industry Applications, vol. 12, no. 4, pp. 364–369, 1976. View at Publisher · View at Google Scholar · View at Scopus
  13. W. McMurray, “Selection of snubbers and clamps to optimize the design of transistor switching converters,” IEEE Transactions on Industry Applications, vol. 16, no. 4, pp. 513–523, 1980. View at Publisher · View at Google Scholar · View at Scopus
  14. F. C. Lee, “High frequency quasi-resonant converter technologies,” Proceedings of the IEEE, vol. 76, no. 4, pp. 377–390, 1988. View at Publisher · View at Google Scholar · View at Scopus
  15. I. Barbi, J. Bolacell, D. Martins, and F. Libano, “Buck quasi-resonant converter operating at constant frequency: analysis, design and experimentation,” in Proceedings of the IEEE 20th Annual Power Electronics Specialists Conference (PESC '89), pp. 873–880, Milwaukee, Wis, USA, 1989. View at Publisher · View at Google Scholar
  16. L. Barbosa, E. Coelho, L. Freitas, J. Vieira, and V. Farias, “PWM soft-switched converters with a single active switch,” IEEJ Transactions on Industry Applications, vol. 117, no. 11, pp. 1305–1310, 1997. View at Google Scholar
  17. J. Lambert, L. Barbosa, E. Coelho, L. Freitas, J. Vieira, and V. Farias, “A boost PWM soft-single-switched converter with low voltage and current stresses,” IEEE Transactions on Power Electronics, vol. 13, no. 1, pp. 16–35, 1998. View at Google Scholar · View at Scopus
  18. L. Barbosa, A. Pereira, J. Rossi, and M. Almeida, “A stressless buck quadratic PWM soft switched converter,” in Proceedings of the 24th International Telecomunications Energy Conference (INTELEC '02), pp. 150–155, 2002. View at Publisher · View at Google Scholar
  19. D. Garth, W. Muldoon, G. Benson, and E. Costague, “Multi-phase, 2 kilowatt, high voltage, regulated power supply,” in Proceedings of the IEEE Power Conditioning Specialists Conference Record, pp. 110–116, 1971.
  20. P. Todd, UC3854 Controlled Power Factor Correction Circuit Design, Unitrode Corporation, Merrimack, NH, USA, 1998.