Table of Contents
Advances in Power Electronics
Volume 2013 (2013), Article ID 697049, 7 pages
http://dx.doi.org/10.1155/2013/697049
Research Article

Performance Analysis of Grid Integrated Hydro and Solar Based Hybrid Systems

Department of Electrical Engineering, Maulana Azad National Institute of Technology (MANIT), Bhopal 462051, India

Received 20 January 2013; Revised 16 May 2013; Accepted 30 May 2013

Academic Editor: Pavol Bauer

Copyright © 2013 Sweeka Meshram et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. V. Verma, P. Pant, and B. Singh, “Indirect current controlled VSC for reactive power and load control support to self-excited induction generator feeding 3-phase 4-wire isolated power system,” in Proceedings of the Joint International Conference on Power Electronics, Drives and Energy Systems (PEDES '10), December 2010. View at Publisher · View at Google Scholar · View at Scopus
  2. H. Yu, J. Pan, and A. Xiang, “A multi-function grid-connected PV system with reactive power compensation for the grid,” Solar Energy, vol. 79, no. 1, pp. 101–106, 2005. View at Publisher · View at Google Scholar · View at Scopus
  3. N. Srisaen and A. Sangswang, “Effects of PV grid-connected system location on a distribution system,” in Proceedings of the IEEE Asia Pacific Conference on Circuits and Systems (APCCAS '06), pp. 852–855, December 2006. View at Publisher · View at Google Scholar · View at Scopus
  4. J. H. So, Y. S. Jung, G. J. Yu, J. Y. Choi, and J. H. Choi, “Performance results and analysis of 3 kW grid-connected PV systems,” Renewable Energy, vol. 32, no. 11, pp. 1858–1872, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. R.-J. Wai and W.-H. Wang, “Grid-connected photovoltaic generation system,” IEEE Transactions on Circuits and Systems I, vol. 55, no. 3, pp. 953–964, 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. S.-K. Kim, J.-H. Jeon, C.-H. Cho, E.-S. Kim, and J.-B. Ahn, “Modeling and simulation of a grid-connected PV generation system for electromagnetic transient analysis,” Solar Energy, vol. 83, no. 5, pp. 664–678, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. S. Meshram, G. Agnihotri, and S. Gupta, “An efficient constant current controller for PV Solar Power Generator integrated with the grid,” in Proceedings of the IEEE 5th Power India Conference (PICONF '12), December 2012.
  8. S. Meshram, G. Agnihotri, and S. Gupta, “A modern two dof controller for grid integration with solar power generator,” International Journal of Electrical Engineering & Technology, vol. 3, no. 3, pp. 164–174, 2012. View at Google Scholar
  9. B. Singh, “Induction generator-a prospective,” Electric Machines and Power Systems, vol. 23, pp. 163–177, 1995. View at Google Scholar
  10. B. Singh, S. S. Murthy, and S. Gupta, “Analysis and design of STATCOM-based voltage regulator for self-excited induction generators,” IEEE Transactions on Energy Conversion, vol. 19, no. 4, pp. 783–790, 2004. View at Publisher · View at Google Scholar · View at Scopus
  11. B. Singh, S. S. Murthy, and S. Gupta, “Analysis and implementation of an electronic load controller for a self-excited induction generator,” IEE Proceedings: Generation, Transmission and Distribution, vol. 151, no. 1, pp. 51–60, 2004. View at Publisher · View at Google Scholar · View at Scopus
  12. B. Singh, S. S. Murthy, and S. Gupta, “Analysis and design of STATCOM-based voltage regulator for self-excited induction generators,” IEEE Transactions on Energy Conversion, vol. 19, no. 4, pp. 783–790, 2004. View at Publisher · View at Google Scholar · View at Scopus
  13. C. Wang and M. H. Nehrir, “Power management of a stand-alone wind/photovoltaic/fuel cell energy system,” IEEE Transactions on Energy Conversion, vol. 23, no. 3, pp. 957–967, 2008. View at Publisher · View at Google Scholar · View at Scopus
  14. T. Hirose and H. Matsuo, “Standalone hybrid wind-solar power generation system applying dump power control without dump load,” IEEE Transactions on Industrial Electronics, vol. 59, no. 2, pp. 988–997, 2012. View at Publisher · View at Google Scholar · View at Scopus
  15. T. K. Saha and D. Kastha, “Design optimization and dynamic performance analysis of a stand-alone hybrid wind-diesel electrical power generation system,” IEEE Transactions on Energy Conversion, vol. 25, no. 4, pp. 1209–1217, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. A. Beluco, P. K. Souza, and A. Krenzinger, “PV hydro hybrid systems,” IEEE Latin America Transactions, vol. 6, no. 7, pp. 626–631, 2008. View at Publisher · View at Google Scholar · View at Scopus
  17. S. Meshram, G. Agnihotri, and S. Gupta, “Design of hydro and solar energy—hybrid system for remote areas,” in Proceedings of the International Conference on Electrical and Electronics Engineering (ICEEE '11), vol. 2, October 2011.
  18. Y. Lang, D. Xu, S. R. Hadianamrei, and H. Ma, “A Novel design method of LCL type utility interface for three-phase voltage source rectifier,” in Proceedings of the International Conference on Power Electronics Specialists Conference, pp. 313–317, 2005.
  19. H. Cha and T.-K. Vu, “Comparative analysis of low-pass output filter for single-phase grid-connected photovoltaic inverter,” in Proceedings of the 25th Annual IEEE Applied Power Electronics Conference and Exposition (APEC '10), pp. 1659–1665, February 2010. View at Publisher · View at Google Scholar · View at Scopus