Table of Contents Author Guidelines Submit a Manuscript
Active and Passive Electronic Components
Volume 18 (1995), Issue 4, Pages 211-245
http://dx.doi.org/10.1155/1995/59312

A Detailed Analytical Study of Non-Linear Semiconductor Device Modelling

Department of Electrical Engineering, I.I. T., Havz KHAS, New Delhi 110016, India

Received 6 March 1995; Accepted 3 April 1995

Copyright © 1995 Hindawi Publishing Corporation. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

This paper presents a detailed analytical study of Gunn, SCR, and p-n junction and of the physical processes that occur inside. Based on the properties of these devices, models for Gunn, SCR, and p-n junction diode have been developed. The results of computer simulated examples have been presented in each case. The non-linear lumped model for Gunn is a unified model as it describes the diffusion effects as the-domain traves from cathode to anode. An additional feature of this model is that it describes the domain extinction and nucleation phenomena in Gunn dioder with the help of a simple timing circuit. The non-linear lumped model for SCR is general and is valid under any mode of operation in any circuit environment. The memristive circuit model for p-n junction diodes is capable of simulating realistically the diode’s dynamic behavior under reverse, forward and sinusiodal operating modes. The model uses memristor, the charge-controlled resistor to mimic various second-order effects due to conductivity modulation. It is found that both storage time and fall time of the diode can be accurately predicted.