Table of Contents Author Guidelines Submit a Manuscript
Active and Passive Electronic Components
Volume 2013, Article ID 720191, 7 pages
http://dx.doi.org/10.1155/2013/720191
Research Article

Noise Performance of Heterojunction DDR MITATT Devices Based on at W-Band

1Academy of Technology, West Bengal University of Technology, Adisaptagram, Hooghly, West Bengal 712121, India
2Institute of Radio Physics and Electronics, University of Calcutta, 92 APC Road, Kolkata, West Bengal 700009, India

Received 24 February 2013; Accepted 5 April 2013

Academic Editor: Gerard Ghibaudo

Copyright © 2013 Suranjana Banerjee et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. E. Hines, “Noise theory for the Read type avalanche diode,” IEEE Transactions on Electron Devices, vol. 13, no. 1, pp. 158–163, 1966. View at Google Scholar
  2. H. K. Gummel and J. L. Blue, “A small-signal theory of avalanche noise in IMPATT diodes,” IEEE Transactions on Electron Devices, vol. 14, pp. 569–580, 1967. View at Google Scholar
  3. H. A. Haus, H. Statz, and R. A. Pucel, “Optimum noise measure of IMPATT diodes,” IEEE Transactions on Microwave Theory and Techniques, vol. 19, no. 10, pp. 801–813, 1971. View at Google Scholar · View at Scopus
  4. R. L. Kuvas, “Noise in IMPATT diodes. Intrinsic properties,” IEEE Transactions on Electron Devices, vol. 19, no. 2, pp. 220–233, 1972. View at Google Scholar · View at Scopus
  5. J. Banerjee, K. Roy, and M. Mitra, “Effect of negative resistance in the noise behavior of Ka-Band IMPATT diodes,” International Journal of Engineering Science and Technology, vol. 4, no. 7, pp. 3584–3691, 2012. View at Google Scholar
  6. Z. Pei, C. S. Liang, L. S. Lai et al., “A high-performance SiGe-Si multiple-quantum-well heterojunction phototransistor,” IEEE Electron Device Letters, vol. 24, no. 10, pp. 643–645, 2003. View at Publisher · View at Google Scholar · View at Scopus
  7. A. Acharyya and J. P. Banerjee, “A comparative study on the effect of optical illumination on Si1-xGex and Si based DDR IMPATT diodes at W-band,” Iranian Journal of Electronics and Electrical Engineering, vol. 7, no. 3, pp. 179–189, 2011. View at Google Scholar
  8. A. Acharyya and J. P. Banerjee, “A comparative study on the effects of tunneling on W-band Si and Si1-xGex based double-drift IMPATT devices,” in IEEE International Conference on Electronics Computer Technology, Kanyakumari, India, April 2012.
  9. A. Acharyya and J. P. Banerjee, “Studies on anisotype Si/Si1-xGex heterojunction DDR IMPATTs: efficient millimeter-wave sources at 94 GHz window,” IETE Journal of Research, vol. 59, no. 3, pp. 1–9, 2013. View at Google Scholar
  10. “Electronic Archive: New Semiconductor Materials, Characteristics and Properties,” 2012, http://www.ioffe.ru/SVA/NSM/Semicond.
  11. W. Shockley, “Negative resistance arising from transit time in semiconductor diodes,” Bell System Technical Journal, vol. 33, pp. 799–826, 1954. View at Google Scholar
  12. S. P. Kwok and G. I. Hadded, “Effects of tunnelling on an IMPATT oscillator,” Journal of Applied Physics, vol. 43, pp. 3824–3860, 1972. View at Google Scholar
  13. J. Nishizawa, K. Motoya, and Y. Okuno, “GaAs TUNNET diodes,” IEEE Transactions on Microwave Theory and Techniques, vol. 26, no. 12, pp. 1029–1035, 1978. View at Google Scholar
  14. E. M. Elta and G. I. Haddad, “High frequency limitations of IMPATT, MITATT and TUNNETT mode devices,” IEEE Transactions on Microwave Theory and Techniques, vol. 27, no. 5, pp. 442–449, 1979. View at Google Scholar · View at Scopus
  15. E. M. Elta and G. I. Hadded, “Mixed tunnelling and avalanche mechanism in p-n junctions and their effects on microwave transit-time devices,” IEEE Transactions on Electron Devices, vol. 25, no. 6, pp. 694–702, 1978. View at Google Scholar
  16. J. F. Luy and R. Kuehnf, “Tunneling-assisted IMPATT operation,” IEEE Transactions on Electron Devices, vol. 36, no. 3, pp. 589–595, 1989. View at Publisher · View at Google Scholar · View at Scopus
  17. S. K. Roy, M. Sridharan, R. Ghosh, and B. B. Pal, “Computer method for the dc field and carrier current profiles in the IMPATT device starting from the field extremum in the depletion layer,” in Proceedings of the 1st Conference on Numerical Analysis of Semiconductor Devices (NASECODE I '79), J. H. Miller, Ed., pp. 266–274, Dublin, Ireland, 1979.
  18. S. K. Roy, J. P. Banerjee, and S. P. Pati, “A Computer analysis of the distribution of high frequency negative resistance in the depletion layer of IMPATT Diodes,” in Proceedings of the 4th Conference on Numerical Analysis of Semiconductor Devices (NASECODE IV '85), pp. 494–500, Dublin, Ireland, 1985.
  19. G. N. Dash and S. P. Pati, “A generalized simulation method for MITATT-mode operation and studies on the influence of tunnel current on IMPATT properties,” Semiconductor Science and Technology, vol. 7, no. 2, pp. 222–230, 1992. View at Publisher · View at Google Scholar · View at Scopus
  20. M. E. Elta, The effect of mixed tunneling and avalanche breakdown on microwave transit-time diodes [Ph.D.dissertation], Electron Physics Laboratory, University of Michigan, Ann Arbor, Mich, USA, 1978.
  21. E. O. Kane, “Theory of tunneling,” Journal of Applied Physics, vol. 32, pp. 83–91, 1961. View at Google Scholar
  22. H. Eisele and G. I. Haddad, “GaAs TUNNETT diodes on diamond heat sink for 100 GHz and above,” IEEE Transactions on Microwave Theory and Techniques, vol. 43, no. 1, pp. 210–213, 1995. View at Google Scholar
  23. G. N. Dash, “A new design approach for MITATT and TUNNETT mode devices,” Solid-State Electronics, vol. 38, no. 7, pp. 1381–1385, 1995. View at Publisher · View at Google Scholar · View at Scopus
  24. A. Acharyya, M. Mukherjee, and J. P. Banerjee, “Effects of tunnelling current on mm-wave IMPATT devices,” International Journal of Electronics. In press.
  25. A. Acharyya, M. Mukherjee, and J. P. Banerjee, “Influence of tunnel current on DC and dynamic properties of silicon based terahertz IMPATT source,” Terahertz Science and Technology, vol. 4, no. 1, pp. 26–41, 2011. View at Google Scholar
  26. A. Acharyya, M. Mukherjee, and J. P. Banerjee, “Studies on the millimeter-wave performance of MITATTs from avalanche transit time phase delay,” in Proceedings of the IEEE Applied Electromagnetics Conference, pp. 1–4, Kolkata, India, December 2011.
  27. S. R. Pattanaik, J. K. Mishra, and G. N. Dash, “A new mm-wave GaAs~Ga0.52In0.48P Heterojunction IMPATT diode,” IETE Journal of Research, vol. 57, no. 4, pp. 351–356, 2011. View at Google Scholar
  28. A. Acharyya and J. P. Banerjee, “Prospects of IMPATT devices based on wide bandgap semiconductors as potential terahertz sources,” Applied Nanoscience, 2012. View at Publisher · View at Google Scholar
  29. A. Acharyya and J. P. Banerjee, “Potentiality of IMPATT devices as terahertz source: an avalanche response time based approach to determine the upper cut-off frequency limits,” IETE Journal of Research, vol. 59, no. 2, pp. 1–10, 2013. View at Google Scholar
  30. A. Acharyya, S. Banerjee, and J. P. Banerjee, “Optical control of millimeter-wave lateral double-drift region silicon IMPATT device,” Radioengineering, vol. 21, no. 4, pp. 1208–1217, 2012. View at Google Scholar
  31. A. Acharyya and J. P. Banerjee, “Analysis of photo-irradiated double-drift region silicon impact avalanche transit time devices in the millimeter-wave and terahertz regime,” Terahertz Science and Technology, vol. 5, no. 2, pp. 97–113, 2012. View at Google Scholar
  32. G. N. Dash, J. K. Mishra, and A. K. Panda, “Noise in mixed tunneling avalanche transit time (MITATT) diodes,” Solid-State Electronics, vol. 39, no. 10, pp. 1473–1479, 1996. View at Publisher · View at Google Scholar · View at Scopus
  33. A. Acharyya, M. Mukherjee, and J. P. Banerjee, “Noise in millimeter-wave mixed tunneling avalanche transit time diodes,” Archives of Applied Science Research, vol. 3, no. 1, pp. 250–266, 2011. View at Google Scholar
  34. A. Acharyya, M. Mukherjee, and J. P. Banerjee, “Noise performance of millimeter-wave silicon based mixed tunneling avalanche transit time (MITATT) diode,” International Journal of Electrical and Electronics Engineering, vol. 4, no. 8, pp. 577–584, 2010. View at Google Scholar
  35. W. N. Grant, “Electron and hole ionization rates in epitaxial Silicon,” Solid-State Electronics, vol. 16, no. 10, pp. 1189–1203, 1973. View at Google Scholar
  36. C. Canali, G. Ottaviani, and A. Alberigi Quaranta, “Drift velocity of electrons and holes and associated anisotropic effects in silicon,” Journal of Physics and Chemistry of Solids, vol. 32, no. 8, pp. 1707–1720, 1971. View at Google Scholar · View at Scopus
  37. J. Lee, A. L. G. Aitken, S. H. Lee, and P. K. Bhattacharya, “Responsivity and Impact ionisation coefficients of Si1-xGex photodiodes,” IEEE Electron Devices, vol. 43, no. 6, pp. 977–981, 1996. View at Google Scholar
  38. K. Yeom, J. M. Hincley, and J. Singh, “Calculation of electron and hole impact ionisation coefficients in SiGe alloys,” Journal of Applied Physics, vol. 80, no. 12, pp. 6773–6782, 1996. View at Google Scholar
  39. M. Ershov and V. Ryzhii, “High field electron transport in SiGe alloy,” Japanese Journal of Applied Physics, vol. 33, no. 3, pp. 1365–1371, 1994. View at Google Scholar
  40. T. Yamada and D. K. Ferry, “Montecarlo simulation of hole transport in strained Si1-xGex,” Solid-State Electronics, vol. 38, no. 4, pp. 881–890, 1995. View at Google Scholar
  41. D. L. Scharfetter and H. K. Gummel, “Large-signal analysis of a silicon read diode oscillator,” IEEE Transactions on Electron Devices, vol. 6, no. 1, pp. 64–77, 1969. View at Google Scholar
  42. J. F. Luy, A. Casel, W. Behr, and E. Kasper, “A 90-GHz double-drift IMPATT diode made with Si MBE,” IEEE Transactions on Electron Devices, vol. 34, no. 5, pp. 1084–1089, 1987. View at Google Scholar · View at Scopus
  43. C. Dalle, P. A. Rolland, and G. Lieti, “Flat doping profile double-drift silicon IMPATT for reliable CW high-power high-efficiency generation in the 94-GHz window,” IEEE Transactions on Electron Devices, vol. 37, no. 1, pp. 227–236, 1990. View at Publisher · View at Google Scholar · View at Scopus
  44. J. F. Luy, H. Jorke, H. Kibbel, A. Casel, and E. Kasper, “Si/SiGe heterostructure mitatt diode,” Electronics Letters, vol. 24, no. 22, pp. 1386–1387, 1988. View at Google Scholar · View at Scopus