Table of Contents Author Guidelines Submit a Manuscript
Active and Passive Electronic Components
Volume 2013, Article ID 762706, 11 pages
http://dx.doi.org/10.1155/2013/762706
Research Article

Three Microwave Frequency Dividers Using Current Source/Sink and Modified Current Source Inverters

1Analog Mixed Signal Team, Freescale Semiconductor Pvt. Ltd., Noida 201301, India
2Department of Electronics and Communication Engineering, Vignan’s Foundation for Science, Technology and Research University, Vadlamudi, Guntur 522213, India

Received 12 June 2013; Accepted 20 November 2013

Academic Editor: Rezaul Hasan

Copyright © 2013 Gautham S. Harinarayan and Avireni Srinivasulu. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. E. Saavedra, “A microwave frequency divider using an inverter ring and transmission gates,” IEEE Microwave and Wireless Components Letters, vol. 15, no. 5, pp. 330–332, 2005. View at Publisher · View at Google Scholar · View at Scopus
  2. L. Fei, “Broadband technology frequency divider design strategies,” RF Design, vol. 28, no. 3, pp. 18–29, 2005. View at Google Scholar
  3. H. C. Luong and G. C. T. Leung, Low-Voltage CMOS RF Frequency Synthesizer, Cambridge University Press, 2004.
  4. R. L. Miller, “Fractional-frequency generators utilizing regenerative modulation,” in Proceedings of the IRE, pp. 446–457, 1939.
  5. A. Q. Safarian and P. Heydari, “Design and analysis of a distributed regenerative frequency divider using distributed mixer,” in Proceedings of the IEEE International Symposium on Cirquits and Systems, pp. I992–I995, May 2004. View at Scopus
  6. S. Verma, H. R. Rategh, and T. H. Lee, “A unified model for injection-locked frequency dividers,” IEEE Journal of Solid-State Circuits, vol. 38, no. 6, pp. 1015–1027, 2003. View at Publisher · View at Google Scholar · View at Scopus
  7. Z. Heshmati, I. C. Hunter, and R. D. Pollard, “Microwave parametric frequency dividers with conversion gain,” IEEE Transactions on Microwave Theory and Techniques, vol. 55, no. 10, pp. 2059–2063, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. B. Razavi, K. F. Lee, and R.-H. Yan, “13.4-GHz CMOS frequency divider,” in Proceedings of the IEEE International Solid-State Circuits Conference, pp. 176–177, February 1994. View at Scopus
  9. S. Pellerano, S. Levantino, C. Samori, and A. L. Lacaita, “A 13.5-mW 5-GHz frequency synthesizer with dynamic-logic frequency divider,” IEEE Journal of Solid-State Circuits, vol. 39, no. 2, pp. 378–383, 2004. View at Publisher · View at Google Scholar · View at Scopus
  10. G. Von Büren, C. Kromer, F. Ellinger, A. Huber, M. Schmatz, and H. Jäckel, “A combined dynamic and static frequency divider for a 40 GHz PLL in 80 nm CMOS,” in Proceedings of the IEEE International Solid-State Circuits Conference (ISSCC '06), pp. 598–585, February 2006. View at Scopus
  11. M. Kurisu, M. Nishikawa, H. Asazawa, A. Tanabe, M. Togo, and A. Furukawa, “11.8-GHz 31-mW CMOS frequency divider,” in Proceedings of the Symposium on VLSI Circuits, pp. 73–74, June 1997. View at Scopus
  12. M. Nogawa and Y. Ohtomo, “A 16.3-GHz 64:1 CMOS frequency divider,” in Proceedings of the 2nd IEEE Asia Pacific Conference on ASICs, pp. 95–98, 2000.
  13. V. Myklebust, “Design of a 5.8 GHz multi-modulus prescaler,” Department of Electronics and Telecommunications, Norwegian University of Science and Technology, 2006.
  14. B. Razavi, RF Microelectronics, Prentice-Hall, Upper Saddle River, NJ, USA, 1998.
  15. B. Mahendranath and A. Srinivasulu, “Analysis of two new voltage level converters with various load conditions,” International Journal of Advances in Telecommunications, Electrotechnics, Signals and Systems, vol. 2, no. 3, pp. 92–98, 2013. View at Publisher · View at Google Scholar
  16. A. Srinivasulu and M. Rajesh, “ULPD and CPTL pull-up stages for differential cascode voltage switch logic,” Journal of Engineering, vol. 2013, Article ID 595296, 5 pages, 2013. View at Publisher · View at Google Scholar
  17. T. Venkata Rao and A. Srinivasulu, “Modified level restorers using current sink and current source inverter structures for BBL-PT full adder,” Radioengineering, vol. 21, no. 4, pp. 1279–1286, 2012. View at Google Scholar