Research Article  Open Access
Huyen Thanh Pham, Thang Vu Nguyen, Loan PhamNguyen, Heisuke Sakai, Toan Thanh Dao, "Design and Simulation of a 6Bit SuccessiveApproximation ADC Using Modeled Organic ThinFilm Transistors", Active and Passive Electronic Components, vol. 2016, Article ID 7201760, 11 pages, 2016. https://doi.org/10.1155/2016/7201760
Design and Simulation of a 6Bit SuccessiveApproximation ADC Using Modeled Organic ThinFilm Transistors
Abstract
We have demonstrated a method for using proper models of pentacene Pchannel and fullerene Nchannel thinfilm transistors (TFTs) in order to design and simulate organic integrated circuits. Initially, the transistors were fabricated, and we measured their main physical and electrical parameters. Then, these organic TFTs (OTFTs) were modeled with support of an organic process design kit (OPDK) added in Cadence. The key specifications of the modeled elements were extracted from measured data, whereas the fitting ones were elected to replicate experimental curves. The simulating process proves that frequency responses of the TFTs cover all biosignal frequency ranges; hence, it is reasonable to deploy the elements to design integrated circuits used in biomedical applications. Complying with complementary rules, the organic circuits work properly, including logic gates, flipflops, comparators, and analogtodigital converters (ADCs) as well. The proposed successiveapproximationregister (SAR) ADC consumes a power of 883.7 µW and achieves an ENOB of 5.05 bits, a SNR of 32.17 dB at a supply voltage of 10 V, and a sampling frequency of about 2 KHz.
1. Introduction
Although Sibased integrated circuits (ICs) are dominant due to their excellent specifications, such as high precision, high speed, and ultralow power consumption [1–3], organic ICs have recently emerged as a potential candidate for many applications, for instance, wearable devices and medical sensors. Its unique advantages over Sibased counterpart include flexibility, biocompatibility, and lowcost process [4–6]. In particular in research and development of organic IC, time and cost could be reduced significantly with computeraided design (CAD) tools [7–10]. Among CAD tools, HSPICE and Cadence Virtuoso are famous for their high accuracy, multifunction, and ease to use. The VLSI group at University of Minnesota built an organic process design kit (OPDK) added in Cadence [11]. The tool supports organic integrated circuit design and simulation, but its library has only a P3HT Pchannel OTFT and a CNT unipolar fieldeffect transistor (FET). In other works, the Spice level 1 MOS model was used to simulate the pentacene circuits [12]. However, a big difference between simulation and measurement results obviously occurred, since the model embraces a few electrical parameters of the charge mobility, threshold voltage, early voltage, and capacitive behavior.
On the other hand, at the circuit level, an analogdigital converter (ADC) plays an important role in signal processing due to its connection between analog and digital world. So far, the organic ADCs have been mainly constructed with Ptype technology and those exhibit many limitations, for example, low gain, narrow bandwidth, low speed, and high power consumption [12–14].
In this work, widely used fullerene and pentacene OTFTs were fabricated and characterized. Subsequently, we utilized the Spice level 61 with 29 parameters, which originally is developed for amorphous silicon transistor, to improve OPDK models for such OTFTs. Electrical characteristics obtained by simulation matched very well with those from the experiments. The welldeveloped models of both Ptype and Ntype OTFTs allow construction of a complex circuit with complementary technology. In later progress, organic logic gates, flipflops, comparators, and successiveapproximationregister (SAR) ADCs were designed and verified in Cadence. The simulation results indicated that our 6bit SAR ADC operated at a high sampling frequency up to 2 KHz and a relatively low power of about 883 µW.
2. Fabrication and Modeling OTFTs
Figure 1 shows the layout structure of OTFTs and molecular structures of pentacene and fullerene together with the OTFT symbols in Cadence. The OTFTs were fabricated on SOI (SiliconOnInsulator) wafer with a heavily doped Si ( + Si, resistivity: 1–100 Ω cm) gate electrode coated with a 50 nm SiO_{2} insulating layer. The experimental method was detailed in previous report [15]. In short, the substrate was cleaned by ultrasonication; 50 nm thick fullerene and 30 nm thick pentacene layers were thermally deposited on SOI via a designed shadow mask, for Nchannel and Pchannel, respectively, at a base pressure of 2 × 10^{−6} torr and deposition rate of 0.1 nm s^{−1}. Finally, Au sourcedrain electrodes were formed by thermal evaporation at a deposition rate of 0.3 nm s^{−1} through a designed shadow mask under a certain pressure of 2 × 10^{−6} torr. The channel length and geometry factor of OTFT devices were 50 μm and 40, respectively. Electrical measurements of the OTFTs were carried out with the Keithley 4200 semiconductor characterization system in a dry nitrogen atmosphere at room temperature in a dark probe station.
In OTFT elements, drainsource current includes accumulation current and leakage current [15], which is described aswhere is the gate dielectric capacitance, µ_{0} is the mobility, is the gatesource voltage, is the threshold voltage, is the characteristic voltage for fieldeffect mobility, γ is the powerlaw mobility, λ is the output conductance, is the saturation modulation, is the knee shape parameter, and SIGMA0 is the minimum leakage current parameter. All of them would appear in model files of OTFT elements, so they need to be specified as accurately as possible.
Among those values, the , , and are the physical structure parameters; µ_{0}, , γ, , and are extracted from the experimental data [10, 15, 16]. The others are fitting parameters determined by simulating with numerical different values. Accordingly, the optimized parameters of the OTFT models are summarized in Table 1. By using these parameters in Cadence, it allows replicating the electrical behaviors of OTFT elements.

Figures 2 and 3 indicate the transfer and output characteristics from simulation results of Pchannel and Nchannel OTFTs, which fit well to the experimental curves. These agreements corroborate that our proposed devices are modeled correctly; hence, it is acceptable to use them in organic integrated circuit designs.
(a)
(b)
(a)
(b)
Furthermore, we have also investigated operating frequencies of the elements so as to ensure that proposed circuits using these ones would be employed in appropriate applications. The frequency response characteristics at μm are reflected in Figure 4(a). It is a general concept that the cutoff frequency is defined as the frequency at which the ratio of the output/input has a magnitude of 0.707. As can be realized in Figure 4(a), the is 40.1 KHz and 10.8 KHz for the Ntype and Ptype, respectively.
(a)
(b)
The in Nchannel OTFT towers over that in Pchannel one due to its higher mobility, as listed in Table 1. The versus is summarized in Figure 4(b). When the varies from 100 µm to 10 µm the cutoff frequency increases from several KHz to several MHz. In terms of frequency, the operating frequencies cover all biosignal frequency ranges in which the highest value is 10 KHz [17].
3. Organic Complementary Logic Gates
VLSI technology fundamentally is comprised of digital logic gates. To further confirm that our designed electronic circuits are biocompatible, in this section, some basic organic complementary digital circuits, including a transmission gate, an inverter, a NOR, and a NAND, are created and verified with a 10 V power supply voltage and about 10 KHz input signals. The applied voltage supply of 10 V to set the OTFT elements works in deep accumulation mode. The chosen working frequency is to adapt to the highest biopotential signal frequency as abovementioned.
3.1. Transmission Gate and Inverter
We assume that the voltage levels of 10 and 0 V correspond to a logical “1” and “0,” respectively. Figure 5(a) shows the schematic and waveforms of the transmission gate, which is indeed a clocked circuit composing a Pchannel and an Nchannel transistor in parallel. The input signal passes through the gate when the clock is high only (in Figure 5(a)).
(a)
(b)
Figure 5(b) displays the schematic of the inverter and its waveforms. As defined, the output voltage () is invertible to the input voltage () in high or low levels. The simulation results suggest that the designed CMOS circuits operate properly.
3.2. NOR and NAND
Figure 6 presents the schematics and waveforms of the organic twoinput CMOS NOR and NAND circuits. With the NOR gate in Figure 6(a), Pchannel OTFTs firstly connect in parallel to form the pullup network, and then, following the complementary design rule, the pulldown network is constructed of Nchannel OTFT elements in serial connection. Similarly, in order to build the NAND gate in Figure 6(b), Pchannel OTFTs are in serial, while Nchannel OTFT elements are in parallel connection. The frequencies of A and B inputs are set to be 10 and 7.14 KHz, respectively. As can be realized in Figure 6, the outputs comply with the truth tables of NOR and NAND gates.
(a)
(b)
3.3. D FlipFlop (DFF)
Flipflop is a basic storage element in digital electronics with two stable states “1” and “0.” Indeed, DFF is most essential element in registers and digital logic blocks discussed in the next sections. Figure 7(a) presents a circuit diagram of flipflop composed by the logic gates designed in the aforementioned section. The observed waveforms in Figure 7(b) demonstrate that output equals input at the rising edges of clk pulse; otherwise, does not change. It means is a “delay” of , as expected.
(a)
(b)
4. 6Bit Organic Fully Differential SAR ADC
Demand for portable compact products in modern life is increasing, so most integrated circuit designers desire to achieve energy saving goals. As for ADCs, the SAR structure is worth doing at all since its total power consumption is much lower than that in other ADC configurations, such as flash, deltasigma, or pipelined ADCs [20].
4.1. Circuit Design
Figure 8(a) displays a conventional structure of SAR ADC, which is constructed of a minimum number of analog blocks, including a Sample/Hold (S/H), a DigitaltoAnalog Converter (DAC), a comparator in connection with a SAR logic, and a register. In this work, to reduce as much as possible power consumption, we have employed simple schematics for the ADC with a limited number of transistor elements complying with complementary rules. The fully differential 6bit SAR ADC having two analog inputs and six digital outputs was designed and simulated with the OPDK in Cadence Virtuoso environment, as simplified in Figure 8(b). The ADC consisted of two track and hold (T/H) blocks, two capacitive DACs, a comparator, a SAR logic, and an output register.
(a)
(b)
Figure 9 describes the T/H circuit as a bootstrapped switch with the input large transistor Ms [21]. The size of Ms affects the linearity since drainsource capacitance of Ms couples to the Cs to sample the input signal. Both T/H blocks sample and hold input signals during conversion time. Their outputs connect to the inputs of the dynamic comparator.
It should be noted that the basic comparator structure is a twostage comparator, including an amplifier and a positive feedback latch. Although that circuit is less sensitive to the effects of kickback noise and device offset, it consumes much more power. In contrast, our design aims to reduce power consumption; hence, the dynamic comparator is implemented with clock signals in order not to draw static currents. Figure 10 presents the schematic of the dynamic latch comparator with a Ptype input differential pair M1M2. When the clk signal goes to high, the outputs outp and outn are high, too. When the clk goes to low, the differential pair compares + and − resulting in output outp or outn being either high or low.
As for DACs, some architectures are wellknown, including currentsteering, C2C, and capacitive switch types. The conventional bit capacitive DAC (CDAC) uses a binaryweighted capacitor array leading to the total capacitance of 2^{N} unit capacitor. This structure obtains better linearity, but the large number of capacitors expands the circuit dimension rapidly and consumes lots of energy. However, the value of total capacitance of one CDAC circuit in Figure 8(b) can be reduced a half since the most significant bit (MSB) is estimated separately [22]. The control algorithm of this ADC requires that the comparator sets the MSB to 1 if is higher than ; otherwise the MSB is 0. Sequentially, the bit ADC pushes MSB to LSB after cycles of clock signals. That is, after several comparison cycles, one conversion step is complete; therefore, the SAR ADC exhibits limited speed. The DAC embraces 5 subblocks; a typical subblock circuit is presented in Figure 11 in which is from 1 to 5 and is from 6 to 2. The capacitance of unit capacitor is , then equals , and . This induces that the total capacitance of one CDAC circuit is . The CDAC1 is designed similarly with inputs Out and −.
The SAR logic comprises 6 DFFs in serial to generate clk1 to clk6. Figure 8(b) shows that the clock signals from clk1 to clk5 are connected to CDACs for controlling 5 capacitor arrays, while clk6 is connected to DFF1 to push the MSB. The output register is also constructed with DFFs to store all bits from the CDAC2 and the MSB ().
4.2. Simulation Results
A power supply voltage of 10 V, a reference voltage of 5 V, a ~2 KHz clock frequency, and a 2 V, 10 Hz sine wave input signal were provided to simulate the designed SAR ADC.
Figure 12 presents a cycle of inputs and outputs of the T/H and its magnitude on timeaxis. The data indicates that the circuit samples and holds the input signals during the conversion duty.
(a)
(b)
Simulation results in Figure 13 also attest the main power consumption at rising and falling edges of clock pulses of the dynamic comparator. Consequently, its average dissipated energy reduces significantly to about 112 µW. The simulation process also points out that the higher input voltage makes the power decrease. This is because of a reduction in the drain current resulting from the lower gatesource voltages of M1 and M2 (in Figure 10).
The timing diagram of the SAR logic is given in Figure 14. Each clk goes to high sequentially at the rising edges of the valid signal, which is created based on the comparator outputs, as seen in Figure 10. All of the clock pulses go to low at the rising edge of the primary clk signal to end one conversion step.
Dynamic performance of an ADC needs to use Fast Fourier Transform (FFT) test method to measure effective number of bits (ENOB) and signaltonoise plus distortion ratio (SNDR). The input signal is sine wave; the output signals are the digital codes; then these codes are converted to analog formation by an ideal DAC. Figure 15 shows the output spectrum of the ADC, which extracts an ENOB of 5.05 bits, a SNDR of 32.17 dB at an average power consumption of 883.7 µW.
Table 2 presents the results obtained in this work in comparison to those from others. In terms of frequency, our circuit achieves the clock speed of 2 KHz, which is the highest value ever reported in organic ADC [12, 14, 18, 19]. Furthermore, other parameters, such as supply voltage, ENOB, sampling rate, and power dissipation, are very comparable to those from the others.
 
Excluding circuits on FPGA. Simulated and measured results. ^{†}Simulation data with Spice level 1. ^{‡}Measured data. Measured results. Simulation results with Spice level 61. 
Up to now, there are four reported works on ADCs, which are compared to our work as seen in Table 2. Reference [12], for example, archives highest sampling frequency of 500 Hz; [18] reduces power supply voltage to the smallest value of 3 V compared to tens of volt in others. The highest resolution is 6 bits in [14, 18], and this work, and the best linearity in [19] is expressed with DNL and INL is 0.24 and 0.42 LSB, respectively. To obtain those encouragements the circuits have to suffer from some disadvantages. For instance, the ADC in [12] consumes up to 1.5 mW, and [18] gets DNL and INL is 2.6 and 3 LSB before digital calibration on FPGA, respectively. Reference [14] contains a voltage controlled oscillator (VCO) generating the maximum frequency below 40 Hz and uses a large number of transistors due to using only Ptype technology, and sampling frequency in [19] is only 4.17 Hz at 40 V power supply voltage. It is noted that the above limitations would prevent the ADCs from any application apart from [14], which could be proposed for smart chemical or temperature sensors. In terms of frequency, our circuit gets the highest clock speed of 2 KHz, which is four times higher than that of the second one. Furthermore, our ENOB is good enough while the power consumption is medium.
5. Conclusions
We have utilized pentacene Pchannel and fullerene Nchannel TFTs to design and simulate organic integrated circuits thanks to creating their valid models with the OPDK added in Cadence. The organic circuits, including logic gates, flipflops, comparators, and analogtodigital converters (ADCs), work properly in biopotential frequency ranges. The SAR ADC achieves 5.05bit ENOB, 32.17 dB SNR with a power consumption of 883.7 µW at 10 V supply voltage, and 2 KHz clock pulses. With abovementioned results, we strongly believe that the models can help to save the time and cost in organic IC design and manufacturing.
Competing Interests
The authors have no conflict of interests associated with this paper.
Acknowledgments
This work has been supported by the National Foundation for Science and Technology Development (NAFOSTED) of Vietnam under Grant no. 103.992013.13 and University of Transport and Communications under Grant code T2016DDT27.
References
 H. Fan, Q. Wei, F. Qiao, and H. Yang, “A novel redundant pipelined successive approximation register ADC,” IEICE Electronics Express, vol. 10, no. 5, Article ID 20130047, 2013. View at: Publisher Site  Google Scholar
 Y. M. Greshishchev et al., “A 40 GS/s 6b ADC in 65 nm CMOS,” in Proceedings of the IEEE International SolidState Circuits Conference Digest of Technical Papers (ISSCC '10), pp. 390–391, San Francisco, Calif, USA, February 2010. View at: Publisher Site  Google Scholar
 R. Sekimoto, A. Shikata, K. Yoshioka, T. Kuroda, and H. Ishikuro, “A 0.5v 5.2fj/conversionstep full asynchronous sar adc with leakage power reduction down to 650 pw by boosted selfpower gating in 40nm CMOS,” IEEE Journal of SolidState Circuits, vol. 48, no. 11, pp. 2628–2636, 2013. View at: Publisher Site  Google Scholar
 G. Dell'Erba, A. Luzio, D. Natali et al., “Organic integrated circuits for information storage based on ambipolar polymers and charge injection engineering,” Applied Physics Letters, vol. 104, no. 15, Article ID 153303, 2014. View at: Publisher Site  Google Scholar
 S. Mandal and Y. Noh, “Printed organic thinfilm transistorbased integrated circuits,” Semiconductor Science and Technology, vol. 30, no. 6, Article ID 064003, 2015. View at: Publisher Site  Google Scholar
 T. Sekitani and T. Someya, “Stretchable organic integrated circuits for largearea electronic skin surfaces,” MRS Bulletin, vol. 37, no. 3, pp. 236–245, 2012. View at: Publisher Site  Google Scholar
 A. Ciprut, A. Chelly, and A. Karsenty, “Usage and limitation of standard mobility models for TCAD simulation of nanoscaled FDSOI MOSFETs,” Active and Passive Electronic Components, vol. 2015, Article ID 460416, 9 pages, 2015. View at: Publisher Site  Google Scholar
 N. P. Papadopoulos, A. Marsal, R. Picos, J. Puigdollers, and A. A. Hatzopoulos, “Simulation of organic inverter,” SolidState Electronics, vol. 68, pp. 18–21, 2012. View at: Publisher Site  Google Scholar
 M. Ghasemi, M. Sam, M. H. Moaiyeri, F. Khosravi, and K. Navi, “A new SPICE model for organic molecular transistors and a novel hybrid architecture,” IEICE Electronics Express, vol. 9, no. 10, pp. 926–931, 2012. View at: Publisher Site  Google Scholar
 V. Vaidya, J. Kim, J. N. Haddock, B. Kippelen, and D. Wilson, “SPICE optimization of organic FET models using charge transport elements,” IEEE Transactions on Electron Devices, vol. 56, no. 1, pp. 38–42, 2009. View at: Publisher Site  Google Scholar
 Organic Process Design Kit, http://opdk.umn.edu.
 H. Marien, M. S. J. Steyaert, E. van Veenendaal, and P. Heremans, “A fully integrated ΔΣ ADC in organic thinfilm transistor technology on flexible plastic foil,” IEEE Journal of SolidState Circuits, vol. 46, no. 1, pp. 276–284, 2011. View at: Google Scholar
 T. Zaki, F. Ante, U. Zschieschang et al., “A 3.3 v 6bit 100 kS/s currentsteering digitaltoanalog converter using organic Ptype thinfilm transistors on glass,” IEEE Journal of SolidState Circuits, vol. 47, no. 1, pp. 292–300, 2012. View at: Publisher Site  Google Scholar
 D. Raiteri, P. V. Lieshout, A. V. Roermund, and E. Cantatore, “An organic VCObased ADC for quasistatic signals achieving 1LSB INL at 6b resolution,” in Proceedings of the IEEE International SolidState Circuits Conference Digest of Technical Papers (ISSCC '13), pp. 108–109, IEEE, San Francisco, Calif, USA, February 2013. View at: Publisher Site  Google Scholar
 M. Estrada, A. Cerdeira, J. Puigdollers et al., “Accurate modeling and parameter extraction method for organic TFTs,” SolidState Electronics, vol. 49, no. 6, pp. 1009–1016, 2005. View at: Publisher Site  Google Scholar
 IEEE, “IEEE standard for test methods for the characterization of organic transistors and materials,” IEEE Standard 16202008, IEEE, 2008. View at: Google Scholar
 D. Prutchi and M. Morris, Design and Development of Medical Electronic Instrumentation, John Wiley & Sons, Hoboken, NJ, USA, 2005.
 W. Xiong, U. Zschieschang, H. Klauk, and B. Murmann, “A 3V 6b successiveapproximation ADC using complementary organic thinfilm transistors on glass,” in Proceedings of the IEEE International SolidState Circuits Conference (ISSCC '10), pp. 134–135, San Francisco, Calif, USA, February 2010. View at: Publisher Site  Google Scholar
 S. Abdinia, M. Benwadih, R. Coppard et al., “A 4b ADC manufactured in a fullyprinted organic complementary technology including resistors,” in Proceedings of the IEEE International SolidState Circuits Conference Digest of Technical Papers (ISSCC '13), pp. 106–107, San Francisco, Calif, USA, February 2013. View at: Publisher Site  Google Scholar
 B. Murmann, “ADC Performance Survey 1997–2015,” http://web.stanford.edu/~murmann/adcsurvey.html. View at: Google Scholar
 A. M. Abo and P. R. Gray, “A 1.5V, 10bit, 14.3MS/s CMOS pipeline analogtodigital converter,” IEEE Journal of SolidState Circuits, vol. 34, no. 5, pp. 599–606, 1999. View at: Publisher Site  Google Scholar
 C.C. Liu, S.J. Chang, G.Y. Huang, and Y.Z. Lin, “A 10bit 50MS/s SAR ADC with a monotonic capacitor switching procedure,” IEEE Journal of SolidState Circuits, vol. 45, no. 4, pp. 731–740, 2010. View at: Publisher Site  Google Scholar
Copyright
Copyright © 2016 Huyen Thanh Pham et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.