Table of Contents Author Guidelines Submit a Manuscript
Active and Passive Electronic Components
Volume 2017, Article ID 5240751, 10 pages
https://doi.org/10.1155/2017/5240751
Research Article

Three-Input Single-Output Voltage-Mode Multifunction Filter with Electronic Controllability Based on Single Commercially Available IC

1Department of Electrical Engineering, Faculty of Engineering, Kasetsart University, Bangkok 10900, Thailand
2Department of Engineering Education, Faculty of Industrial Education, King Mongkut’s Institute of Technology Ladkrabang, Bangkok 10520, Thailand

Correspondence should be addressed to Winai Jaikla; moc.liamtoh@aj.ianiw

Received 6 January 2017; Accepted 6 February 2017; Published 3 April 2017

Academic Editor: Jiun-Wei Horng

Copyright © 2017 Supachai Klungtong et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

This paper presents a second-order voltage-mode filter with three inputs and single-output voltage using single commercially available IC, one resistor, and two capacitors. The used commercially available IC, called LT1228, is manufactured by Linear Technology Corporation. The proposed filter is based on parallel RLC circuit. The filter provides five output filter responses, namely, band-pass (BP), band-reject (BR), low-pass (LP), high-pass (HP), and all-pass (AP) functions. The selection of each filter response can be done without the requirement of active and passive component matching condition. Furthermore, the natural frequency and quality factor are electronically controlled. Besides, the nonideal case is also investigated. The output voltage node exhibits low impedance. The experimental results can validate the theoretical analyses.

1. Introduction

Analog filter is widely utilized in numerous applications such as communication, sound system, instrumentation, and control system. The biquadratic or second-order filter is the important building block. Also, this filter is the basic block to design high order filter. In particular, the second-order multifunction filter which provides many filter responses in the same circuit has gained significant attention and has become an interesting research topic [1, 2]. The multiple-inputs single-output (MISO) universal filter is the interesting one and has been continuously proposed. In case of voltage-mode MISO filter, the selection of output filter response by switching on or off the input voltages should be done without the matching condition of passive and active elements. Moreover, the additional double gain amplifier should not be required.

Attention has been paid to the use of active building block in synthesis and design of electronic circuits for analog signal processing [36]. The active building block based circuits require a minimum number of active elements (most of them use only single active building block). Thus, the new active building blocks have been continuously introduced especially the electronically controllable active building block. Most of them are designed and constructed from BJT or CMOS transistors. Practically, these devices should be fabricated into the chip for the best way to test their performances. However, their performances and applications are often proved via simulation by only using computer program due to the investment cost reason. Although the new active building block can be constructed from commercially available IC, for example, in [7, 8] using AD844 and in [9] using OPA860 and EL2082, they still require more than one commercially available IC. Despite the fact that some circuits can use single AD844 as active building block, the AD844 based circuits are not electronically controlled.

In the literature, a number of multiple-input single-output voltage-mode multifunction filters based on different active building blocks have been reported in [1042] and the references cited. However, the proposed filter in [1016, 1823, 27, 29, 30, 32, 34, 38, 39, 41, 42] uses more than one active building block. The natural frequency and quality factor of the filters in [1017, 19, 2125, 27, 28, 30, 32, 35, 38, 39] are not electronically tuned. The matching condition for selection of output filter response is required for the circuit in [14, 15, 17, 21, 23, 26, 28, 33, 3538]. The active building block used in [19, 24, 27, 30, 32, 36, 38] is not commercially available IC. The output voltage node does not exhibit low impedance for the filter in [11, 12, 14, 15, 17, 18, 2022, 24, 25, 29, 31, 33, 34, 3638, 40]. The proposed filter in [37, 41] requires double input signal. Additionally, only the proposed filters in [1118, 21, 22, 25, 26, 31, 35, 39, 41, 42] are supported by the experimental measurements.

The three-input single-output voltage-mode biquad filter emphasizing the use of single commercially available IC, LT1228 from Linear Technology Inc., is present in this paper. The proposed filter consists of single LT1228, single resistor, and two capacitors which are suitable for off-the-shelf implementation. The selection of output filter response can be done without the requirement of any passive and active component matching condition. The natural frequency and quality factor can be electronically adjusted. The experimental results of proposed filter agree well with the theoretical expectation.

2. Principle of Operation

2.1. Active Building Block: LT1228

LT1228 is commercially manufactured by Linear Technology Inc. [43]. It is the combination of transconductance amplifier (OTA) and current feedback amplifier (CFA). The symbolic representation of LT1228 is shown in Figure 1(a). Let us denote the name of each port as , , , , and . In ideal consideration, impedance at ports , , and exhibits high and the impedance at ports and exhibits low. Figure 1(b) shows the equivalent circuit and pin configuration is illustrated in Figure 1(c). Ideally, the port relation can be described by the following matrix: where is the transresistance gain. In an ideal case, is typically very large and can be considered as infinite value. of LT1228 is controlled by DC bias current as follows:

Figure 1: LT1228. (a) Electrical symbol of LT1228. (b) Equivalent circuit. (c) Pin configuration.
2.2. Proposed Filter

The structure of three-input and single-output voltage-mode filter which is composed of single commercially available IC, single resistor, and two capacitors is presented in Figure 1. This filter is based on parallel RLC circuit. The input voltage is applied at terminal which is ideally high impedance, is applied through , and is applied through . The output voltage is at terminal which exhibits low impedance. In routine analysis, the output voltage of the proposed filter can be given asFrom (3), the natural frequency is given as Subsequently, the quality factor is given as It is evident from (4) and (5) that the natural frequency and quality factor can be electronically tuned via .

It is found from (3) that the derivation of five filter responses can be done as follows:(i)If the input voltage is applied at node while nodes and are grounded, the noninverting low-pass filter is achieved.(ii)If the input voltage is applied at node while nodes and are grounded, the noninverting high-pass filter is achieved.(iii)If the input voltage is applied at node while nodes and are grounded, the noninverting band-pass filter is achieved.(iv)If the input voltage is applied at nodes and while node is grounded, the noninverting band-reject filter is achieved.(v)If the input voltage is applied at nodes and while the inverting input voltage is applied at node , the noninverting all-pass filter is.

It is found from the above statement that the output filter response can be selected without the active and passive matching condition. Moreover, the all-pass filter response does not require the double gain amplifier circuit unlike the MISO filters in [37, 41]. However, the inverting unit gain amplifier circuit is required for the all-pass function [44].

3. Effect of Parasitic Elements

Practically, the influence of parasitic element in LT1228 will affect the performances of the proposed filter. High impedance ports , , and and the parallel RC appeared. The parasitic resistance and capacitance are, respectively, named as , , , , , and . At low impedance port , the series resistance appears. This resistance is denoted as . Also, the transresistance gain is considered as paralleled with . These important parasitic impedances most affect the performance of the proposed circuit. Taking them into account, the output voltage of the circuit in Figure 2 is obtained aswhere , , , , and . If the operational frequency , the output voltage in (6) becomesFrom (7), the natural frequency is given as Subsequently, the quality factor is given as

Figure 2: Proposed filter.

4. Experimental Results

In order to evaluate the performances of the proposed three-input single-output voltage-mode multifunction filter in Figure 2, the experiment was done by using LT1228. The power supply voltage of the LT1228 was ±5 V. An experimental setup was made by taking = = 1 nF, = 1 kΩ, = 100 μA. A resistor of 2 kΩ in series with the terminal (pin 8 of LT1228) was connected as recommended in datasheet [43]. With above component values, the natural frequency and quality factor as analyzed in (4) and (5) become = 159.15 kHz and = 1. For this test, the sinusoidal voltage with 60  was applied as input voltage. The frequency response of the LP, HP, BP, and BR function is reported in Figure 3 and the phase and gain response of AP function is shown in Figure 4. It is obvious that the proposed filter can provide five filter responses as described in Section 2. The theoretical and experimental gain responses are slightly different during low and high frequency due to the effect of parasitic elements of LT1228 as studied in Section 2. The experimental natural frequency is about 155 kHz. The deviation of theoretical and experimental natural frequency is about 2.6%. The time-domain responses of output voltage in LP, HP, BP, BR, and AP functions are, respectively, shown in Figures 5, 6, 7, 8, and 9 when three frequencies, 10 kHz, 155 kHz, and 1 MHz with 60  were applied at the input voltage.

Figure 3: Experimental gain response of the proposed filer.
Figure 4: Experimental phase and gain response of all-pass function.
Figure 5: The measured input and output waveforms of low-pass filter at (a) 10 kHz, (b) 155 kHz, and (c) 1 MHz.
Figure 6: The measured input and output waveforms of high-pass filter at (a) 10 kHz, (b) 155 kHz, and (c) 1 MHz.
Figure 7: The measured input and output waveforms of band-pass filter at (a) 10 kHz, (b) 155 kHz, and (c) 1 MHz.
Figure 8: The measured input and output waveforms of band-reject filter at (a) 10 kHz, (b) 155 kHz, and (c) 1 MHz.
Figure 9: The measured input and output waveforms of all-pass filter at (a) 10 kHz, (b) 155 kHz, and (c) 1 MHz.

5. Conclusion

In this contribution, the three-input single-output voltage-mode filter is presented. The proposed filter uses only single commercially available IC, LT1228 as active element. The natural frequency and quality factor can be tuned electronically by changing the bias current of LT1228. The selection of output filter response can be done without requirement of the matching condition of passive and active component. Also, the selection of all-pass filter response can be done without the requirement of double gain amplifier. Using only single commercially available IC, the proposed filter is suitable for off-the-shelf implementation. The workability of the proposed filter is demonstrated by experimental results.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

The authors are very grateful to Kasetsart University’s Graduate School for funding used for publications in international academic journals.

References

  1. N. Afzal and D. Singh, “Reconfigurable mixed mode universal filter,” Active and Passive Electronic Components, vol. 2014, Article ID 769198, 14 pages, 2014. View at Publisher · View at Google Scholar · View at Scopus
  2. P. Beg and S. Maheshwari, “Generalized filter topology using grounded components and single novel active element,” Circuits, Systems, and Signal Processing, vol. 33, no. 11, pp. 3603–3619, 2014. View at Publisher · View at Google Scholar · View at Scopus
  3. W. Mekhum and W. Jaikla, “Three input single output voltage-mode multifunction filter with independent control of pole frequency and quality factor,” Advances in Electrical and Electronic Engineering, vol. 11, no. 6, pp. 494–500, 2013. View at Publisher · View at Google Scholar · View at Scopus
  4. J.-W. Horng, C.-M. Wu, and N. Herencsar, “Three-input-one-output current-mode universal biquadratic filter using one differential difference current conveyor,” Indian Journal of Pure and Applied Physics, vol. 52, no. 8, pp. 556–562, 2014. View at Google Scholar · View at Scopus
  5. P. Uttaphut, “New current-mode quadrature sinusoidal oscillator using single DVCCTA as active element,” Przegląd Elektrotechniczny, vol. 1, no. 9, pp. 231–234, 2016. View at Publisher · View at Google Scholar
  6. W. Jaikla, A. Noppakarn, and S. Lawanwisut, “New gain controllable resistor-less current-mode first order allpass filter and its application,” Radioengineering, vol. 21, no. 1, pp. 312–316, 2012. View at Google Scholar · View at Scopus
  7. S. Maheshwari and M. S. Ansari, “Catalog of realizations for DXCCII using commercially available ICs and applications,” Radioengineering, vol. 21, no. 1, pp. 281–289, 2012. View at Google Scholar · View at Scopus
  8. S. Maheshwari, “Current conveyor all-pass sections: brief review and novel solution,” The Scientific World Journal, vol. 2013, Article ID 429391, 6 pages, 2013. View at Publisher · View at Google Scholar · View at Scopus
  9. R. Sotner, J. Jerabek, N. Herencsar, J.-W. Horng, K. Vrba, and T. Dostal, “Simple oscillator with enlarged tunability range based on ECCII and VGA utilizing commercially available analog multiplier,” Measurement Science Review, vol. 16, no. 2, pp. 35–41, 2016. View at Publisher · View at Google Scholar · View at Scopus
  10. C. Chang and M.-S. Lee, “Universal voltage-mode filter with three inputs and one output using three current conveyors and one voltage follower,” Electronics Letters, vol. 30, no. 25, pp. 2112–2113, 1994. View at Publisher · View at Google Scholar · View at Scopus
  11. J.-W. Horng, C.-C. Tsai, and M.-H. Lee, “Novel universal voltage-mode biquad filter with three inputs and one output using only two current conveyors,” International Journal of Electronics, vol. 80, no. 4, pp. 543–546, 1996. View at Publisher · View at Google Scholar · View at Scopus
  12. J.-W. Horng, M.-H. Lee, H.-C. Cheng, and C.-W. Chang, “New CCII-based voltage-mode universal biquadratic filter,” International Journal of Electronics, vol. 82, no. 2, pp. 151–155, 1997. View at Publisher · View at Google Scholar · View at Scopus
  13. C.-M. Chang, “Multifunction biquadratic filters using current conveyors,” IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, vol. 44, no. 11, pp. 956–958, 1997. View at Publisher · View at Google Scholar · View at Scopus
  14. C.-M. Chang and S.-H. Tu, “Universal voltage-mode filter with four inputs and one output using two CCII s,” International Journal of Electronics, vol. 86, no. 3, pp. 305–309, 1999. View at Publisher · View at Google Scholar · View at Scopus
  15. J.-W. Horng, “High-input impedance voltage-mode universal biquadratic filter using three plus-type CCIIs,” IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, vol. 48, no. 10, pp. 996–997, 2001. View at Publisher · View at Google Scholar · View at Scopus
  16. J.-W. Horng, “Voltage-mode multifunction filter using one current feedback amplifier and one voltage follower,” International Journal of Electronics, vol. 88, no. 2, pp. 153–157, 2001. View at Publisher · View at Google Scholar · View at Scopus
  17. J.-W. Horng, C.-K. Chang, and J.-M. Chu, “Voltage-mode universal biquadratic filter using single current-feedback amplifier,” IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, vol. 85, no. 8, pp. 1970–1973, 2002. View at Google Scholar · View at Scopus
  18. J.-W. Horng, “High input impedance voltage-mode universal biquadratic filter using two OTAs and one CCII,” International Journal of Electronics, vol. 90, no. 3, pp. 185–191, 2003. View at Publisher · View at Google Scholar · View at Scopus
  19. C.-M. Chang and H.-P. Chen, “Universal capacitor-grounded voltage-mode filter with three inputs and a single output,” International Journal of Electronics, vol. 90, no. 6, pp. 401–406, 2003. View at Publisher · View at Google Scholar · View at Scopus
  20. J.-W. Horng, “Voltage-mode universal biquadratic filter using two OTAs,” Active and Passive Electronic Components, vol. 27, no. 2, pp. 85–89, 2004. View at Publisher · View at Google Scholar · View at Scopus
  21. J.-W. Horng, “High input impedance voltage-mode universal biquadratic filters with three inputs using plus-type CCIIs,” International Journal of Electronics, vol. 91, no. 8, pp. 465–475, 2004. View at Publisher · View at Google Scholar · View at Scopus
  22. J. W. Horng, “Voltage-mode universal biquadratic filters using CCIIs,” IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, vol. 87, pp. 406–409, 2004. View at Google Scholar
  23. N. A. Shah and M. A. Malik, “Voltage/current-mode universal filter using FTFN and CFA,” Analog Integrated Circuits and Signal Processing, vol. 45, no. 2, pp. 197–203, 2005. View at Publisher · View at Google Scholar · View at Scopus
  24. C.-M. Chang and H.-P. Chen, “Single FDCCII-based tunable universal voltage-mode filter,” Circuits, Systems, and Signal Processing, vol. 24, no. 2, pp. 221–227, 2005. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at Scopus
  25. N. A. Shah, M. F. Rather, and S. Z. Iqbal, “A novel voltage-mode universal filter using a single CFA,” Active and Passive Electronic Devices, vol. 1, pp. 183–188, 2005. View at Google Scholar
  26. M. Sagbas and M. Koksal, “Voltage-mode three-input single-output multifunction filters employing minimum number of components,” Frequenz, vol. 61, no. 3-4, pp. 87–93, 2007. View at Google Scholar · View at Scopus
  27. W.-Y. Chiu and J.-W. Horng, “High-input and low-output impedance voltage-mode universal biquadratic filter using DDCCs,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 54, no. 8, pp. 649–652, 2007. View at Publisher · View at Google Scholar · View at Scopus
  28. S. Kilinç, A. Ü. Keskin, and U. Çam, “Cascadable voltage-mode multifunction biquad employing single OTRA,” Frequenz, vol. 61, no. 3-4, pp. 84–86, 2007. View at Google Scholar · View at Scopus
  29. M. Kumngern, M. Somdunyakanok, and P. Prommee, “High-input impedance voltage-mode multifunction filter with three-input single-output based on simple CMOS OTAs,” in Proceedings of the International Symposium on Communications and Information Technologies (ISCIT '08), pp. 426–431, October 2008. View at Publisher · View at Google Scholar · View at Scopus
  30. H.-P. Chen and Y.-Z. Liao, “High-input and low-output impedance voltage-mode universal biquadratic filter using FDCCIIs,” in Proceedings of the 9th International Conference on Solid-State and Integrated-Circuit Technology (ICSICT '08), pp. 1794–1798, October 2008. View at Publisher · View at Google Scholar · View at Scopus
  31. N. Herencsar, J. Koton, and K. Vrba, “Single CCTA–based universal biquadratic filters employing minimum components,” International Journal of Computer and Electrical Engineering, vol. 1, no. 3, pp. 307–310, 2009. View at Publisher · View at Google Scholar
  32. H.-P. Chen, “Voltage-mode FDCCII-based universal filters,” AEU—International Journal of Electronics and Communications, vol. 62, no. 4, pp. 320–323, 2008. View at Publisher · View at Google Scholar · View at Scopus
  33. W. Tangsrirat, “Novel current-mode and voltage-mode universal biquad filters using single CFTA,” Indian Journal of Engineering and Materials Sciences, vol. 17, no. 2, pp. 99–104, 2010. View at Google Scholar · View at Scopus
  34. A. Ranjan and S. K. Paul, “Voltage mode universal biquad using CCCII,” Active and Passive Electronic Components, vol. 2011, Article ID 439052, 5 pages, 2011. View at Publisher · View at Google Scholar · View at Scopus
  35. I. Myderrizi, S. Minaei, and E. Yuce, “DXCCII-based grounded inductance simulators and filter applications,” Microelectronics Journal, vol. 42, no. 9, pp. 1074–1081, 2011. View at Publisher · View at Google Scholar · View at Scopus
  36. W. Tangsrirat and O. Channumsin, “Voltage-mode multifunctional biquadratic filter using single DVCC and minimum number of passive elements,” Indian Journal of Pure and Applied Physics, vol. 49, no. 10, pp. 703–707, 2011. View at Google Scholar · View at Scopus
  37. J. Satansup and W. Tangsrirat, “Single VDTA-based voltage-mode electronically tunable universal filter,” in Proceedings of the 27th International Technical Conference on Circuits/Systems, Computers and Communications, Sapporo, Japan, July 2012.
  38. J.-W. Horng, C.-H. Hsu, and C.-Y. Tseng, “High input impedance voltage-mode universal biquadratic filters with three inputs using three CCs and grounding capacitors,” Radioengineering, vol. 21, no. 1, pp. 290–296, 2012. View at Google Scholar · View at Scopus
  39. J. K. Pathak, A. K. Singh, and R. Senani, “New Voltage Mode Universal Filters Using Only Two CDBAs,” ISRN Electronics, vol. 2013, Article ID 987867, 6 pages, 2013. View at Publisher · View at Google Scholar
  40. K. L. Pushkar, D. R. Bhaskar, and D. Prasad, “A new MISO-type voltage-mode universal biquad using single VD-DIBA,” ISRN Electronics, vol. 2013, Article ID 478213, 5 pages, 2013. View at Publisher · View at Google Scholar
  41. W. Ninsraku, D. Biolek, W. Jaikla, S. Siripongdee, and P. Suwanjan, “Electronically controlled high input and low output impedance voltage mode multifunction filter with grounded capacitors,” AEU—International Journal of Electronics and Communications, vol. 68, no. 12, pp. 1239–1246, 2014. View at Publisher · View at Google Scholar · View at Scopus
  42. S. Sangyaem, S. Siripongdee, W. Jaikla, and F. Khateb, “Five-inputs single-output voltage mode universal filter with high input and low output impedance using VDDDAs,” International Journal for Light and Electron Optics, vol. 128, pp. 14–25, 2017. View at Publisher · View at Google Scholar
  43. http://www.linear.com/product/LT1228.
  44. S. Siripongdee and W. Jaikla, “Electronically controllable grounded inductance simulators using single commercially available IC: LT1228,” AEU—International Journal of Electronics and Communications, 2017. View at Publisher · View at Google Scholar