Table of Contents Author Guidelines Submit a Manuscript
Advances in Preventive Medicine
Volume 2014 (2014), Article ID 534082, 7 pages
Research Article

Interaction of Some Commercial Teas with Some Carbohydrate Metabolizing Enzymes Linked with Type-2 Diabetes: A Dietary Intervention in the Prevention of Type-2 Diabetes

1Functional Foods and Nutraceuticals Unit, Biochemistry Department, Federal University of Technology, PMB 704, Akure, Nigeria
2Biochemistry Department, Obafemi Awolowo University, Ile-Ife, Nigeria

Received 25 November 2013; Accepted 13 December 2013; Published 16 January 2014

Academic Editor: Magdalena Gherardi

Copyright © 2014 Ganiyu Oboh et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


This study is aimed at assessing the inhibitory effect of teas on key enzymes ( -amylase and -glucosidase) linked with type-2 diabetes and their antioxidant properties. Four samples of three brands were used; infusions of green tea (GT), 2 brands of black tea (BT), and a formulated herbal preparation for diabetes (ADT) (white tea, Radix Puerariae, Radix ophiopogonis, hawthorn berry, Chinese yam, and fragrant Solomon seal rhizome) were prepared and subsequently analyzed for their total phenol, ascorbic acid contents, antioxidant properties (2,2-Azizobis (3-Ethylbenzo-Thiazoline~6-sulfonate) “ABTS” scavenging ability and ferric reducing antioxidant property), and inhibition of pancreatic- -amylase and intestinal- -glucosidase in vitro. The study revealed that GT had the highest total phenol content, ascorbic acid content, ABTS* scavenging ability, and ferric reducing ability. Furthermore, all the teas inhibited Fe2+ and sodium nitroprusside induced lipid peroxidation in pancreas, with GT having the highest inhibitory effect. Conversely, there was no significant difference ( ) in the inhibitory effects of the teas on -amylase and -glucosidase. The antidiabetic property of the teas could be attributed to their inhibitory effect on carbohydrate hydrolyzing enzymes implicated in diabetes and their antioxidant activities.