Antioxidant, Anti-Inflammatory, and Anticarcinogenic Efficacy of an Ayurvedic Formulation: Amritotharanam Kashyam
Read the full article
Journal profile
Advances in Pharmacological and Pharmaceutical Sciences publishes original research articles and review articles in all areas of experimental and clinical pharmacology, pharmaceutics, medicinal chemistry and drug delivery.
Editor spotlight
Advances in Pharmacological and Pharmaceutical Sciences maintains an Editorial Board of practicing researchers from around the world, to ensure manuscripts are handled by editors who are experts in the field of study.
Special Issues
Latest Articles
More articlesAnticataract Effect of the Aqueous Extract of the Flowers of Aspilia africana in Murine Model of Diabetic and Age-Related Cataracts
Background. The use of Aspilia africana in traditional medicine for the management of ocular diseases has been reported in India and some indigenous communities of Africa. The aim of this study was to investigate the aqueous extract of the flowers of A. africana (AAE) as an anticataract remedy using murine models of diabetic and senile cataracts. Methods. Preliminary phytochemical screening of the extract, in vitro antioxidant assays, and in vitro aldose reductase inhibitory activity were performed. For anticataract investigations of the extracts, diabetic cataract was induced by galactose administration in 3-week-old Sprague Dawley rats. The evaluation of experimentally induced age-related cataract was performed by administering sodium selenite to 10-day-old rat pups. Results. The phytochemical analysis revealed the presence of alkaloids, tannins, flavonoids, glycosides, and saponins. In vitro aldose reductase inhibitory property of the extract on rat lenses revealed that the AAE inhibited the enzyme activity with IC50 of 12.12 µg/ml. For the anticataract investigations, 30, 100, and 300 mg·kg−1AAE-treated rats recorded significantly low () cataract scores compared to the negative control rats, indicating a delay in cataractogenesis from the second week of treatment in the galactose-induced cataractogenesis. Similarly, the treatment with AAE caused a significant reduction () in cataract scores compared to the negative control rats in the selenite-induced cataractogenesis. Markers of lens transparency, such as aquaporin 0, alpha-A crystallin, and total lens proteins and lens glutathione levels, were significantly preserved () in each cataract model after AAE treatment. Conclusion. The study established the anticataract potential of the aqueous extract of flowers of A. africana in murine models, hence giving scientific credence to its folkloric use in the management of cataract.
Toxicity, Antibacterial, and Phytochemical Analyses of Antrocaryon klaineanum Pierre Extracts
Medicinal plants are traditionally used in Gabon to treat several types of illnesses. The study’s purpose was to determine the toxic, antibacterial, and anti-inflammatory effects of Antrocaryon klaineanum Pierre extracts and to characterize their phytochemical compounds. Toxicity was evaluated on frog tadpoles (Phrynobatrachus africanus Hallowell). The microorganism susceptibility test was performed by the diffusion method, while minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were evaluated using the microdilution technique. Anti-inflammatory activity was tested through protein denaturation and membrane stabilization methods. Chromatography and molecular network techniques were used to characterize chemical compounds. The lethality test showed that the lethal concentration (LC50) increased from 110.03 ± 1.25 to 15.86 ± 2.21 μg/mL after 24 and 96 hours of exposure. In tadpoles exposed to 7.81 μg/mL extract, the first mortalities (12.5%) were observed on the fifth day of exposure. A relative decrease in mature erythrocytes exposed to plant extracts was observed. The antibacterial activity shows that the Ak F2, Ak F3, and Ak F4 fractions (from the water-ethanol crude extract) gave the greatest antibacterial activities compared to the other extracts. The water, water-acetone, and water-ethanol extracts showed good inhibition of denaturation. The haemolysis test shows that the extracts exhibited good anti-inflammatory activities. Phytochemical characterisation revealed four major compounds, including monogallate epicatechin and hydroxy-ergostadian. The molecular network revealed five main clusters. Our study shows that A. klaineanum Pierre could be a promising natural product for the isolation of molecules with potential biological activities.
Pharmacometrics: A New Era of Pharmacotherapy and Drug Development in Low- and Middle-Income Countries
Pharmacotherapy, in many cases, is practiced at a suboptimal level of performance in low- and middle-income countries (LMICs) although stupendous amounts of data are available regularly. The process of drug development is time-consuming, costly, and is also associated with loads of hurdles related to the safety concerns of the compounds. This review was conducted with the objective to emphasize the role of pharmacometrics in pharmacotherapy and the drug development process in LMICs for rational drug therapy. Pharmacometrics is widely applied for the rational clinical pharmacokinetic (PK) practice through the population pharmacokinetic (popPK) modeling and physiologically based pharmacokinetic (PBPK) modeling approach. The scope of pharmacometrics practice is getting wider day by day with the untiring efforts of pharmacometricians. The basis for pharmacometrics analysis is the computer-based modeling and simulation of pharmacokinetics/pharmacodynamics (PK/PD) data supplemented by characterization of important aspects of drug safety and efficacy. Pharmacometrics can be considered an invaluable tool not only for new drug development with maximum safety and efficacy but also for dose optimization in clinical settings. Due to the convenience of using sparse and routine patient data, a significant advantage exists in this regard for LMICs which would otherwise lag behind in clinical trials.
2-Deoxy-D-Glucose: A Novel Pharmacological Agent for Killing Hypoxic Tumor Cells, Oxygen Dependence-Lowering in Covid-19, and Other Pharmacological Activities
The nonmetabolizable glucose analog 2-deoxy-D-glucose (2-DG) has shown promising pharmacological activities, including inhibition of cancerous cell growth and N-glycosylation. It has been used as a glycolysis inhibitor and as a potential energy restriction mimetic agent, inhibiting pathogen-associated molecular patterns. Radioisotope derivatives of 2-DG have applications as tracers. Recently, 2-DG has been used as an anti-COVID-19 drug to lower the need for supplemental oxygen. In the present review, various pharmaceutical properties of 2-DG are discussed.
Chemical Profiles and In Vitro Cholinesterase Inhibitory Activities of the Flower Extracts of Cassia spectabilis
Background. Cassia spectabilis is a flowering plant containing various metabolites that provide potential for pharmacological activities. The current study aimed to investigate the ethanolic and water extracts of C. spectabilis as cholinesterase inhibitor as one of the target treatments for Alzheimer’s disease. The chemical composition of the extracts was also studied to determine which components are responsible for the bioactivity. Methods. The cholinesterase inhibitory activity assay was carried out by the modified Ellman’s method against acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). LC-MS/MS analysis was carried out to investigate the chemical profiles of the extracts, followed by a molecular networking study by GNPS. Results. Both extracts showed inhibition against AChE and BChE in a dose-dependent manner, with the higher potency exhibited by the ethanolic extract with IC50 values of 7.88 and 3.78 μg/mL. The chemical analysis and molecular networking study of the flower extracts revealed similarity between the ethanolic and water extracts. Piperidine alkaloids were identified in both extracts, while the sphingolipid compounds were found in the ethanolic extract. Conclusion. The water and ethanolic extracts of C. spectabilis flowers displayed potency for Alzheimer’s disease treatment. The presence of piperidine alkaloids in the extract may be responsible for the cholinesterase inhibitory activity. The higher potency of the ethanolic extract compared to the water extract is possibly due to the higher amount of piperidine alkaloids in the ethanolic extract. Further study is needed to quantify the concentration of alkaloids in the extracts.
Hepatoprotective Effect of Kaempferol: A Review of the Dietary Sources, Bioavailability, Mechanisms of Action, and Safety
The liver is the body’s most critical organ that performs vital functions. Hepatic disorders can affect the physiological and biochemical functions of the body. Hepatic disorder is a condition that describes the damage to cells, tissues, structures, and functions of the liver, which can cause fibrosis and ultimately result in cirrhosis. These diseases include hepatitis, ALD, NAFLD, liver fibrosis, liver cirrhosis, hepatic failure, and HCC. Hepatic diseases are caused by cell membrane rupture, immune response, altered drug metabolism, accumulation of reactive oxygen species, lipid peroxidation, and cell death. Despite the breakthrough in modern medicine, there is no drug that is effective in stimulating the liver function, offering complete protection, and aiding liver cell regeneration. Furthermore, some drugs can create adverse side effects, and natural medicines are carefully selected as new therapeutic strategies for managing liver disease. Kaempferol is a polyphenol contained in many vegetables, fruits, and herbal remedies. We use it to manage various diseases such as diabetes, cardiovascular disorders, and cancers. Kaempferol is a potent antioxidant and has anti-inflammatory effects, which therefore possesses hepatoprotective properties. The previous research has studied the hepatoprotective effect of kaempferol in various hepatotoxicity protocols, including acetaminophen (APAP)-induced hepatotoxicity, ALD, NAFLD, CCl4, HCC, and lipopolysaccharide (LPS)-induced acute liver injury. Therefore, this report aims to provide a recent brief overview of the literature concerning the hepatoprotective effect of kaempferol and its possible molecular mechanism of action. It also provides the most recent literature on kaempferol’s chemical structure, natural source, bioavailability, and safety.