Advances in Pharmacological and Pharmaceutical Sciences
 Journal metrics
See full report
Acceptance rate11%
Submission to final decision92 days
Acceptance to publication13 days
CiteScore5.100
Journal Citation Indicator0.540
Impact Factor2.8

Cardiovascular Protective Effect of Garcinia dulcis Flower Acetone Extract in 2-Kidney-1-Clip Hypertensive Rats

Read the full article

 Journal profile

Advances in Pharmacological and Pharmaceutical Sciences publishes original research articles and review articles in all areas of experimental and clinical pharmacology, pharmaceutics, medicinal chemistry and drug delivery.

 Editor spotlight

Advances in Pharmacological and Pharmaceutical Sciences maintains an Editorial Board of practicing researchers from around the world, to ensure manuscripts are handled by editors who are experts in the field of study.

 Special Issues

Do you think there is an emerging area of research that really needs to be highlighted? Or an existing research area that has been overlooked or would benefit from deeper investigation? Raise the profile of a research area by leading a Special Issue.

Latest Articles

More articles
Research Article

The Effect of Clopidogrel and Ticagrelor on Human Adipose Mesenchymal Stem Cell Osteogenic Differentiation Potential: In Vitro Comparative Study

Ticagrelor (TICA) and clopidogrel (CLP) are extensively used antiplatelet drugs that act by antagonizing the P2Y12 receptors that are found on platelets in addition to bone cells. Aim. The purpose of this study was to investigate the effect of clopidogrel and ticagrelor on stem cells osteogenic differentiation in vitro. Methods. Human adipose-derived mesenchymal stem cells (hAd-MSCs) were divided into (1) control group, (2) osteogenic group (osteo group), (3) clopidogrel group (CLP group), and (4) ticagrelor group (TICA group). The osteogenic differentiation potential was determined by mineralization nodule formation using Alizarin Red S staining, measuring ALP enzyme activity by alkaline phosphatase assay. Quantitative determination for osteogenic markers included osteocalcin (OC); runt-related transcription factor 2 (RUNX2) performed using western blot; osteoprotegerin (OPG) using enzyme-linked immunosorbent assay (ELISA) and inflammatory markers; and tumor necrosis factor (TNF-α) and interleukin-6 (IL-6) measured using real-time polymerase chain reaction quantitative (RT-PCR) and ELISA. Results. In comparison to all study groups, the TICA group showed significant increase in the mineralized extracellular matrix, ALP enzyme activity, and bone markers expression as RUNX2 (), OC, and OPG (). The expression of IL-6 and TNF-α was determined by RT-qPCR and ELISA techniques. TICA and CLP significantly decreased both markers compared to the control group. The TICA group showed statistically significant lower levels of both markers () than the CLP and control groups via the ELISA technique. Conclusion. TICA may possess a positive effect on hAd-MSCs osteogenic differentiation compared to CLP.

Research Article

Structure Identification and Risk Assurance of Unknown Impurities in Pramipexole Oral Drug Formulation

Impurities compounds in any pharmaceutical product or drug substance are inevitable from a chemistry point of view. The quality and safety of a pharmaceutical product are also significantly affected by these impurities content; therefore, impurities need to be identified and characterized through the use of appropriate analytical methods. Pramipexole is a nonergot dopamine agonist used to treat various Parkinson’s disease symptoms. Two unknown impurities were detected from a pramipexole dihydrochloride solid dosage form. These impurities were identified and characterized using ultra-performance liquid chromatography coupled with high-resolution mass spectroscopy (UPLC-HRMS). These impurities were found to be enriched when mannitol existed in the formulation. The structure and mechanism involved in the existence of the impurities were proposed. Furthermore, observation of the binding affinity potential risk of these impurities to the pramipexole receptor has also been demonstrated through molecular docking and molecular dynamics simulation study. The binding energy result showed that pramipexole interaction with dopamine receptors D2 and D3 was higher than pramipexole mannose adduct and pramipexole ribose adduct.

Research Article

Suppression of Migration and Invasion by 4-Carbomethoxyl-10-Epigyrosanoldie E from the Cultured Soft Coral Sinularia sandensis through the MAPKs Pathway on Oral Cancer Cells

The primary reason for cancer-related fatalities is metastasis. The compound 4-carbomethoxyl-10-epigyrosanoldie E, derived from the Sinularia sandensis soft coral species grown in cultures, exhibits properties that counteract inflammation. Moreover, it has been observed to trigger both apoptosis and autophagy within cancerous cells. This research focuses on examining the inhibitory impact of 4-carbomethoxyl-10-epigyrosanoldie E on the migration and invasion processes in Cal-27 and Ca9-22 oral cancer cell lines. To assess how this compound affects cell migration and invasion, the Boyden chamber assay was employed. Furthermore, Western blot analysis was utilized to explore the underlying molecular mechanisms. In a dose-dependent manner, 4-carbomethoxyl-10-epigyrosanoldie E notably decreased the levels of matrix metalloproteinase-2 (MMP-2) and MMP-9, along with urokinase-type plasminogen activator (uPA), in both Cal-27 and Ca9-22 cell lines. Conversely, it elevated the concentrations of tissue inhibitors of metalloproteinases-1 (TIMP-1) and TIMP-2. In addition, the treatment with this compound led to the inhibition of phosphorylation in extracellular signal-regulated kinase (ERK), p38, and c-Jun N-terminal kinase (JNK). It also curtailed the expression of several key proteins including focal adhesion kinase (FAK), protein kinase C (PKC), growth factor receptor-bound protein 2 (GRB2), Rac, Ras, Rho A, mitogen-activated protein kinase kinase kinase 3 (MEKK3), and mitogen-activated protein kinase kinase 7 (MKK7). Furthermore, the expression levels of IQ-domain GTPase-activating protein 1 (IQGAP1) and zonula occludens-1 (ZO-1) were significantly reduced by the compound. The ability of 4-carbomethoxyl-10-epigyrosanoldie E to inhibit the migration and invasion of Cal-27 and Ca9-22 oral cancer cells was observed to be dose dependent. This inhibitory effect is primarily attributed to the suppression of MMP-2 and MMP-9 expression, as well as the downregulation of the mitogen-activated protein kinase (MAPK) signaling pathway.

Research Article

Development of the RP-HPLC Method for Simultaneous Determination and Quantification of Artemether and Lumefantrine in Fixed-Dose Combination Pharmaceutical Dosage Forms

Developing countries face enormous challenges with substandard and falsified antimalarial drugs. One specific issue is the lack of a simple, cost-effective, and robust HPLC method to simultaneously determine and quantify the active pharmaceutical ingredients (APIs) in fixed-dose artemether-lumefantrine pharmaceutical dosage forms. The current study developed a novel, simple, sensitive, precise, accurate, and cost-effective RP-HPLC method for the simultaneous determination and quantification of artemether and lumefantrine in pharmaceutical dosage forms. The HPLC analysis was carried out on an Agilent 1260 Infinity Series HPLC system equipped with an ODS Intersil-C8 (150 × 4.6 mm) 5.0 µm column, by isocratic elution. The mobile phase composition consisted of acetonitrile and 0.05% orthophosphoric acid buffer of pH 3.5 in the ratio of 70 : 30 v/v. The analysis was performed at a 1 mL/min flow rate and a column temperature of 25°C. The total run time was 6 minutes. The detection was done with a variable wavelength detector (VWD) at an isosbestic point wavelength (λ) of 210 nm. The developed method was validated according to the ICH guidelines concerning system suitability, specificity, linearity, accuracy, precision, and robustness. The system suitability of the developed method revealed satisfactory theoretical plates and symmetry factors. The method proved to be specific, with no interference of mobile phase or excipients. The calibration plot exhibited linearity over the concentration range of 275–1925 μg/mL with  = 0.9992 for artemether and a range of 150–1050 μg/mL with  = 0.9985 for lumefantrine. The accuracy of the method, determined by the recovery study, was 99.79–100.16% for artemether and 99.04–99.50% for lumefantrine. The % RSD values for intraday precision were 0.175 and 0.203, while interday precision values were 0.340 and 0.554 for artemether and lumefantrine, respectively. The method demonstrated robustness when subjected to slight modifications in the flow rate, column temperature, and mobile phase composition. The developed analytical method proved satisfactory as per ICH guidelines and hence can be used for the determination and quantification of artemether and lumefantrine in bulk drug and pharmaceutical dosage forms.

Research Article

A Model for Monitoring Spontaneously Reported Medication Errors Using the Adjuvanted Recombinant Zoster Vaccine as an Example

A European legislation was put in place for the reporting of medication errors, and guidelines were drafted to help stakeholders in the reporting, evaluation, and, ultimately, minimization of these errors. As part of pharmacovigilance reporting, a proper classification of medication errors is needed. However, this process can be tedious, time-consuming, and resource-intensive. To fulfill this obligation regarding medication errors, we developed an algorithm that classifies the reported errors in an automated way into four categories: potential medication errors, intercepted medication errors, medication errors without harm (i.e., not associated with adverse reaction(s)), and medication errors with harm (i.e., associated with adverse reaction(s)). A fifth category (“conflicting category”) was created for reported cases that could not be unambiguously classified as either potential or intercepted medication errors. Our algorithm defines medication error categories based on internationally accepted terminology using the Medical Dictionary for Regulatory Activities (MedDRA®) preferred terms. We present the algorithm and the strengths of this automated way of reporting medication errors. We also give examples of visualizations using spontaneously reported vaccination error data associated with the adjuvanted recombinant zoster vaccine. For this purpose, we used a customized web-based platform that uses visualizations to support safety signal detection. The use of the algorithm facilitates and ensures a consistent way of categorizing medication errors with MedDRA® terms, thereby saving time and resources and avoiding the risk of potential mistakes versus manual classification. This allows further assessment and potential prevention of medication errors. In addition, the algorithm is easy to implement and can be used to categorize medication errors from different databases.

Research Article

Inhibition of Pancreatic Lipase by Flavonoid Derivatives: In Vitro and In Silico Investigations

Obesity, characterized by excessive adipose tissue accumulation, has emerged as a crucial determinant for a wide range of chronic medical conditions. The identification of effective interventions for obesity is of utmost importance. Widely researched antiobesity agents focus on pancreatic lipase, a significant therapeutic target. This study presented the evaluation of ten flavonoid compounds in terms of their inhibitory activities against pancreatic lipase, utilizing both in vitro and in silico approaches. The results indicated that all tested compounds demonstrated modest and weaker inhibitory activities compared to the reference compound, orlistat. Among the compounds investigated, F01 exhibited the highest potency, with an IC50 value of 17.68 ± 1.43 µM. The enzymatic inhibition kinetic analysis revealed that F01 operated through a competitive inhibition mechanism with a determined of 7.16 μM. This value suggested a moderate binding affinity for the pancreatic lipase enzyme. Furthermore, the associated value was quantified at 0.03272 ΔA·min−1. In silico studies revealed that F01 displayed a binding mode similar to that of orlistat, despite lacking an active functional group capable of forming a covalent bond with Ser152 of the catalytic triad. However, F01 formed a hydrogen bond with this crucial amino acid. Furthermore, F01 interacted with other significant residues at the enzyme’s active site, particularly those within the lid domain. Based on these findings, F01 demonstrates substantial potential as a candidate for further investigations.

Advances in Pharmacological and Pharmaceutical Sciences
 Journal metrics
See full report
Acceptance rate11%
Submission to final decision92 days
Acceptance to publication13 days
CiteScore5.100
Journal Citation Indicator0.540
Impact Factor2.8
 Submit Check your manuscript for errors before submitting

Article of the Year Award: Impactful research contributions of 2022, as selected by our Chief Editors. Discover the winning articles.