Advances in Pharmacological and Pharmaceutical Sciences
 Journal metrics
Acceptance rate16%
Submission to final decision93 days
Acceptance to publication43 days
CiteScore4.000
Impact Factor-

Computational Evaluation of the Inhibition Efficacies of HIV Antivirals on SARS-CoV-2 (COVID-19) Protease and Identification of 3D Pharmacophore and Hit Compounds

Read the full article

 Journal profile

Advances in Pharmacological and Pharmaceutical Sciences publishes original research articles, review articles, and clinical studies in all areas of experimental and clinical pharmacology, pharmaceutics, medicinal chemistry and drug delivery.

 Editor spotlight

Advances in Pharmacological and Pharmaceutical Sciences maintains an Editorial Board of practicing researchers from around the world, to ensure manuscripts are handled by editors who are experts in the field of study.

 Special Issues

Do you think there is an emerging area of research that really needs to be highlighted? Or an existing research area that has been overlooked or would benefit from deeper investigation? Raise the profile of a research area by leading a Special Issue.

Latest Articles

More articles
Research Article

Antihypernociceptive, Anxiolytic, and Antidepressant Properties of Aqueous and Ethanol Extracts of Dissotis thollonii Cogn. (Melastomataceae) in Mice

Diabetic neuropathy, which affects 7 to 9% of the world’s population and that is usually accompanied by anxiety and depression, is chronic pain that results from impaired function of the central or peripheral nervous system. This study aimed at evaluating the antihypernociceptive, antiallodynic, anxiolytic, and antidepressant effects of Dissotis thollonii extracts. Diabetic neuropathy was induced by intraperitoneal injection of streptozotocin (200 mg/kg) in mice. The aqueous and ethanol extracts (250 and 500 mg/kg) were administered orally. Hyperalgesia (thermal and chemical), allodynia (mechanical and thermal), anxiety (high plus labyrinth, light-dark box, and social interaction), and depression (open field test, suspension test tail, and forced swimming test) were evaluated, and then the levels of some cytokines and growth factors were determined. The aqueous and ethanol extracts of Dissotis thollonii demonstrated significant antihypernociceptive (inhibition of hyperalgesia and allodynia), anxiolytic, and antidepressant activities in mice made diabetic by STZ. The extracts also significantly inhibited () the levels of TNF-α, IL-1β, and IL-6 in the blood as well as the levels of TNF-α, IL-1β, IL-6, IGF, and NGF in the sciatic nerve. This study shows that the extracts of Dissotis thollonii have antihypernociceptive and neuroprotective effects which could be linked to the inhibition of proinflammatory cytokines and growth factors in the blood and the sciatic nerve.

Research Article

Hair Washing Formulations from Aloe elegans Todaro Gel: The Potential for Making Hair Shampoo

This study aimed to describe the gross phytochemical constituents of Aloe elegans Todaro gel and evaluate the characteristics and quality of lab-made hair washing formulations prepared from the gel to show its potential in formulating hair washing shampoos. A. elegans gel mass was prepared from mature, healthy leaves collected from natural stand. Samples of 100% methanol extract of the gel were subjected to standard phytochemical screening and gas chromatography-mass spectroscopy (GC-MS) analysis. Five hair washing formulations (Fs) were, likewise, prepared by mixing 4.0–10.0 mL of gel with one (0.05 mL) to two (0.10 mL) drops of six synthetic and natural ingredients, namely, coconut oil, jojoba oil, olive oil, pure glycerin oil, lemon juice, and vitamin E. The gel to the total ingredient ratios (v/v) of the five formulations were 93 : 7 (F1), 94.5 : 5.5 (F2), 96.4 : 3.6 (F3), and 96.6 : 3.4 (F4 and F5). The formulations were evaluated using sensory inspection and common physicochemical methods. The phytochemical screening and GC-MS analysis revealed that A. elegans gel is the source of important chemical constituents used in the formulation of shampoos and similar products including saponins, capric acid, lauric acid, myristic acid, palmitic acid, linoleic acid, stearic acid, and phytol. Lab-made A. elegans hair washing formulations, especially those with 96.4–96.6% gel, were found to have similar characteristics and qualities with a common marketed shampoo. All the formulations were turbid with characteristic odor as the marketed shampoo. The pH values of the hair washing formulations (6.4–4.6) were comparable to those of the marketed shampoo (6.7). Formulations with higher proportion of gel had better foam stability, higher solid content (26–29%), higher surface tension (33–38 dynes/cm), shorter wetting time (150–160 sec), equivalent viscosities (26.45–26.73 poise), and conditioning performance than the marketed shampoo. These findings demonstrate that A. elegans gel mass can be used in the formulation of good-quality hair washing shampoos. We recommend future studies that aim to develop the phytochemical profile of the plant and a refined protocol of hair washing shampoo formulation.

Research Article

Comparative Study of Leaf and Rootstock Aqueous Extracts of Foeniculum vulgare on Chemical Profile and In Vitro Antioxidant and Antihyperglycemic Activities

Foeniculum vulgare is a medicinal plant used in Moroccan folk medicine to treat several diseases such as diabetes. The aim of this study was to determine the phenolic bioactive compounds and to evaluate the antioxidant and antihyperglycemic activities of Foeniculum vulgare leaf and rootstock extracts. Phenolic compounds of F. vulgare rootstock and leaf extracts were determined using HPLC-DAD-QTOFMS analysis. The antioxidant activity was evaluated using 1,1-diphenyl-2-picrylhydrazyl (DPPH) and 2,2’-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS•+) radicals. Moreover, the in vitro antihyperglycemic effects were tested by measuring the inhibition of α-amylase and α-glucosidase activities. HPLC-DAD-QTOFMS analysis identified thirty-two phenolic components in both leaf and rootstock extracts. Caffeic acid, quinic acid, and chlorogenic acid were the major compounds of F. vulgare leaf extract (FVLE), while the main compound of F. vulgare rootstock extracts (FVRE) was quinic acid. In the DPPH assay, F. vulgare leaf extract showed important antioxidant activity (IC50 = 12.16 ± 0.02 μg/mL) than F. vulgare rootstock extract (IC50 = 34.36 ± 0.09 μg/mL). Moreover, fennel leaf extracts revealed also the most powerful antioxidant activity (IC50 = 22.95 ± 0.4 μg/mL) in the ABTS assay. The in vitro antihyperglycemic activity showed that F. vulgare rootstock extract exhibited a remarkable inhibitory capacity (IC50 = 194.30 ± 4.8 μg/mL) of α-amylase compared with F. vulgare leaf extract (IC50 = 1026.50 ± 6.5 μg/mL). Furthermore, the inhibition of α-glucosidase was more importantly with F. vulgare rootstock (IC50 of 165.90 ± 1.2 μg/mL) than F. vulgare leaf extracts (203.80 ± 1.3 μg/mL). The funding of this study showed that F. vulgare rootstock and leaf extracts presented several phenolic compounds and showed important antioxidant and antidiabetic effects. We suggest that the identified molecules are responsible for the obtained activities. However, further studies focusing on the isolation and the determination of antioxidant and antidiabetic effects of F. vulgare rootstock and leaf main compounds are required.

Research Article

Activities of Some Medicinal Plants on the Proliferation and Invasion of Brain Tumor Cell Lines

Cancer is a debilitating disease that is on the increase in both developed and developing countries. Anticancer drugs are often expensive, have narrow spectrum of activities, and are associated with toxicities and side effects such as myelosuppression, immunosuppression, gastrointestinal disturbance, alopecia, skin toxicity, and hepatotoxicity. Plants have been the major source of anticancer drugs both in orthodox and traditional medicine. Many of the plants claimed by the traditional medicine practitioners (TMPs) to be effective in the treatment of cancer are yet to be evaluated scientifically. In this work, five medicinal plants used by TMPs in Borno State, Nigeria, were tested against two brain tumor cell lines. Ethanol extracts of Securidaca longepedunculata, Andira inermis subsp. rooseveltii, Annona senegalensis, Carissa edulis, and Parinari polyandra were used. U87 and U231 brain tumor cell lines were used for proliferation assay, U251 cell line was used for the invasion assay in collagen V coated inserts, and U87 cell line was used for the western blot detection of cleaved Poly-ADP-Ribose-Polymerase (PARP). The result revealed that all tested extracts significantly () inhibited the proliferation of U87 and U231 cell lines with the respective IC50 values ranging between 8 and 20 μg/ml for S. longepedunculata and 100 and 90 μg/ml for P. polyandra. The five extracts significantly () inhibited the invasion of U251 cell line at the concentration of 10 μg/ml (S. longepedunculata), 20 μg/ml (A. inermis), 50 μg/ml (A. senegalensis), 50 μg/ml (C. edulis), and 50 μg/ml (P. polyandra). Securidaca longepedunculata extract induced the cleavage of PARP. It was concluded that these medicinal plants have antiproliferative and anti-invasive activities and possess good prospects as source of anticancer agents especially S. longepedunculata which induced apoptosis in U87 cell line.

Review Article

Current Status of Alginate in Drug Delivery

Alginate is one of the natural polymers that are often used in drug- and protein-delivery systems. The use of alginate can provide several advantages including ease of preparation, biocompatibility, biodegradability, and nontoxicity. It can be applied to various routes of drug administration including targeted or localized drug-delivery systems. The development of alginates as a selected polymer in various delivery systems can be adjusted depending on the challenges that must be overcome by drug or proteins or the system itself. The increased effectiveness and safety of sodium alginate in the drug- or protein-delivery system are evidenced by changing the physicochemical characteristics of the drug or proteins. In this review, various routes of alginate-based drug or protein delivery, the effectivity of alginate in the stem cells, and cell encapsulation have been discussed. The recent advances in the in vivo alginate-based drug-delivery systems as well as their toxicities have also been reviewed.

Research Article

Ameliorative Effect of Vernonia amygdalina Plant Extract on Heavy Metal-Induced Liver and Kidney Dysfunction in Rats

Heavy metal toxicity contributes to liver and kidney dysfunction and damage through oxidative stress mechanisms; however, from previous studies, extracts from the Vernonia amygdalina plant have shown to possess potent antioxidant properties. This study was aimed at uncovering the potential ameliorative effects of ethanolic extract from Vernonia amygdalina plant in heavy metal toxicity-induced liver and kidney dysfunction. For this study, 44 Sprague Dawley rats were divided into three groups. The control group received a basal diet and water only while the treatment groups received varied dosages of the heavy metals. The copper (Cu) and lead (Pb) groups had five subgroups. The Cu only and Cu recovery subgroups were administered with 16 mg/kg Cu intraperitoneally daily for 14 days, whereas the Pb only and Pb recovery subgroups were administered with 13 mg/kg Pb intraperitoneally daily for 14 days. Subsequently, the Pb only and Cu only subgroups were sacrificed. The three Pb and Cu treatment subgroups received oral graded doses (100 mg/kg, 200 mg/kg, and 300 mg/kg) of the extract for 21 days. The Cu recovery and Pb recovery subgroups were left to recover for 21 days. After histological examinations, the Pb and Cu pretreatment groups showed evidence of focal necrosis accompanied by inflammatory cell infiltrations. The serum levels of liver biomarkers AST, ALT, and GGT, as well as urea and creatinine, were significantly elevated () following copper and lead exposure. Upon posttreatment of the rats with the extract, the physiological levels of the biomarkers were restored and tissue architecture of the organs improved. Thus, the ethanolic extract of Vernonia amygdalina is capable of ameliorating the effects of heavy metal toxicity through potent antioxidative mechanisms.

Advances in Pharmacological and Pharmaceutical Sciences
 Journal metrics
Acceptance rate16%
Submission to final decision93 days
Acceptance to publication43 days
CiteScore4.000
Impact Factor-
 Submit

We are committed to sharing findings related to COVID-19 as quickly as possible. We will be providing unlimited waivers of publication charges for accepted research articles as well as case reports and case series related to COVID-19. Review articles are excluded from this waiver policy. Sign up here as a reviewer to help fast-track new submissions.