Table of Contents Author Guidelines Submit a Manuscript
Advances in Pharmacological Sciences
Volume 2012, Article ID 245431, 6 pages
http://dx.doi.org/10.1155/2012/245431
Research Article

Analgesic and Anti-Inflammatory Activity of Pinus roxburghii Sarg.

1Institute of Pharmaceutical Sciences, Kurukshetra University, Kurukshetra 136 119, India
2Rayat College of Pharmacy, Ropar, Punjab 144 533, India

Received 9 February 2012; Revised 25 April 2012; Accepted 25 April 2012

Academic Editor: Abdelwahab Omri

Copyright © 2012 Dhirender Kaushik et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. O. A. Oyedapo, C. O. Adewunmi, E. O. Iwalewa, and V. O. Makanju, “Analgesic, antioxidant and anti-inflammatory related activities of 21-hydroxy-2,41-dimethoxychalcone and 4-hydroxychalcone in mice,” Journal of Biological Sciences, vol. 8, no. 1, pp. 131–136, 2008. View at Google Scholar · View at Scopus
  2. M. Anilkumar, “Ethnomedicinal plants as anti-inflammatory and analgesic agents,” in Ethnomedicine: A Source of Complementary Therapeutics, pp. 267–293, Research Signpost, India, 2010. View at Google Scholar
  3. F. Conforti, S. Sosa, M. Marrelli et al., “The protective ability of Mediterranean dietary plants against the oxidative damage: the role of radical oxygen species in inflammation and the polyphenol, flavonoid and sterol contents,” Food Chemistry, vol. 112, no. 3, pp. 587–594, 2009. View at Publisher · View at Google Scholar · View at Scopus
  4. IMS Health, IMS National Sales Perspectives TM, 2005.
  5. A. Robert, “Antisecretory, antiulcer, cytoprotective and diarrheogenic properties of prostaglandins,” Advances in Prostaglandin and Thromboxane Research, vol. 2, pp. 507–520, 1976. View at Google Scholar · View at Scopus
  6. B. M. Peskar, “On the synthesis of prostaglandins by human gastric mucosa and its modification by drugs,” Biochimica et Biophysica Acta, vol. 487, no. 2, pp. 307–314, 1977. View at Google Scholar · View at Scopus
  7. H. Tapiero, G. Nguyen Ba, P. Couvreur, and K. D. Tew, “Polyunsaturated fatty acids (PUFA) and eicosanoids in human health and pathologies,” Biomedicine and Pharmacotherapy, vol. 56, no. 5, pp. 215–222, 2002. View at Publisher · View at Google Scholar · View at Scopus
  8. M. G. Dharmasiri, J. R. A. C. Jayakody, G. Galhena, S. S. P. Liyanage, and W. D. Ratnasooriya, “Anti-inflammatory and analgesic activities of mature fresh leaves of Vitex negundo,” Journal of Ethnopharmacology, vol. 87, no. 2-3, pp. 199–206, 2003. View at Publisher · View at Google Scholar · View at Scopus
  9. N. Kumara, “Identification of strategies to improve research on medicinal plants used in Sri Lanka,” in Proceedings of the WHO Symposium, pp. 12–14, University of Ruhuna, Galle, Sri Lanka, 2001.
  10. M. Gupta, U. K. Mazumder, P. Gomathi, and V. T. Selvan, “Antiinflammatory evaluation of leaves of Plumeria acuminata,” BMC Complementary and Alternative Medicine, vol. 6, article 36, 2006. View at Publisher · View at Google Scholar · View at Scopus
  11. C. J. Earle, “Pinus roxburghii Sargent 1897,” http://www.conifers.org/pi/pin/roxburghii.htm.
  12. B. Sharad and A. Bohra, “Antibacterial potential of three naked-seeded (Gymnosperm) plants,” Natural Product Radiance, vol. 7, no. 5, pp. 420–425, 2008. View at Google Scholar · View at Scopus
  13. A. J. Eckert and B. D. Hall, “Phylogeny, historical biogeography, and patterns of diversification for Pinus (Pinaceae): phylogenetic tests of fossil-based hypotheses,” Molecular Phylogenetics and Evolution, vol. 40, no. 1, pp. 166–182, 2006. View at Publisher · View at Google Scholar · View at Scopus
  14. V. P. S. Verma and R. K. Suri, “Geographic variation in the chemical composition of turpentine oil of chirpine (PrS),” Indian Perfumer, vol. 22, pp. 179–181, 1978. View at Google Scholar
  15. M. Smaleh, O. P. Sharma, and N. P. Dobhal, “Chemical composition of turpentine oil from pleoresin (Pinus roxburghii Sargent) Indian oerfumer,” Chemistry of Forest Products Branch, vol. 20, pp. 15–19, 1976. View at Google Scholar
  16. S. Rastogi, A. Shukla, and S. A. Kolhapure, “Evaluation of the clinical efficacy and safety of RG-01 (Rumalaya gel) in the management of chronic sub-acute inflammatory joint disorder,” Medicine Update, vol. 12, no. 1, pp. 31–37, 2004. View at Google Scholar
  17. A. Sharma and S. A. Kolhapure, “Evaluation of the efficacy and safety of Rumalaya gel in the management of acute and chronic inflammatory musculoskeltal disorders: an open, prospective, noncomparative, phase III clinical trial,” Medicine Update, vol. 12, no. 10, pp. 39–45, 2005. View at Google Scholar
  18. C. A. Winter, E. A. Risley, and G. W. Nuss, “Carrageenin-induced edema in hind paw of the rat as an assay for antiiflammatory drugs,” Proceedings of the Society for Experimental Biology and Medicine, vol. 111, pp. 544–547, 1962. View at Google Scholar · View at Scopus
  19. C. A. Winter and C. C. Porter, “Effect of alterations in the side chain upon antiinflammatory and liver glycogen activities of hydrocortisone esters,” Journal of the American Pharmaceutical Association, vol. 46, pp. 515–519, 1957. View at Google Scholar
  20. R. Koster, M. Anderson, and J. De Beer, “Acetic acid for analgesic screening,” Federation Proceedings, vol. 18, pp. 412–417, 1959. View at Google Scholar
  21. S. Aydin, T. Demir, Y. Ozturk et al., “Analgesic activity of Nepeta italica L,” Phytotherapy Research, vol. 13, pp. 20–23, 1999. View at Google Scholar
  22. M. A. Antônio and A. R. M. Souza Brito, “Oral anti-inflammatory and anti-ulcerogenic activities of a hydroalcoholic extract and partitioned fractions of Turnera ulmifolia (Turneraceae),” Journal of Ethnopharmacology, vol. 61, no. 3, pp. 215–228, 1998. View at Publisher · View at Google Scholar · View at Scopus
  23. J. R. Vane and R. M. Botting, “New insights into the mode of action of anti-inflammatory drugs,” Inflammation Research, vol. 44, no. 1, pp. 1–10, 1995. View at Publisher · View at Google Scholar · View at Scopus
  24. J. B. Perianayagam, S. K. Sharma, and K. K. Pillai, “Anti-inflammatory activity of Trichodesma indicum root extract in experimental animals,” Journal of Ethnopharmacology, vol. 104, no. 3, pp. 410–414, 2006. View at Publisher · View at Google Scholar · View at Scopus
  25. K. F. Swingle and F. E. Shideman, “Phases of the inflammatory response to subcutaneous implantation of a cotton pellet and their modification by certain anti-inflammatory agents,” Journal of Pharmacology and Experimental Therapeutics, vol. 183, no. 1, pp. 226–234, 1972. View at Google Scholar · View at Scopus
  26. C. R. McCurdy and S. S. Scully, “Analgesic substances derived from natural products (natureceuticals),” Life Sciences, vol. 78, no. 5, pp. 476–484, 2005. View at Publisher · View at Google Scholar · View at Scopus
  27. E. Elisabetsky, T. A. Arnador, R. R. Albuquerque, D. S. Nunes, and A. Do CT Carvalho, “Analgesic activity of Psychotria colorata (Willd. ex R. and S.) Muell. Arg. alkaloids,” Journal of Ethnopharmacology, vol. 48, no. 2, pp. 77–83, 1995. View at Publisher · View at Google Scholar · View at Scopus
  28. F. Ahmed, M. H. Hossain, A. A. Rahman et al., “Antinociceptive and sedative effects of the bark of Cerbera odollam Gaertn,” International Journal of Oriental Pharmacy and Experimental Medicine, vol. 6, pp. 344–348, 2006. View at Google Scholar
  29. R. A. Ribeiro, M. L. Vale, S. M. Thomazzi et al., “Involvement of resident macrophages and mast cells in the writhing nociceptive response induced by zymosan and acetic acid in mice,” European Journal of Pharmacology, vol. 387, no. 1, pp. 111–118, 2000. View at Publisher · View at Google Scholar · View at Scopus
  30. N. Voilley, “Acid-sensing ion channels (ASICs): new targets for the analgesic effects of non-steroid anti-inflammatory drugs (NSAIDs),” Current Drug Targets, vol. 3, no. 1, pp. 71–79, 2004. View at Publisher · View at Google Scholar · View at Scopus
  31. M. M. Hossain, M. S. Ali, A. Saha et al., “Antinociceptive activity of whole plant extracts of Paederia foetida,” Dhaka University Journal of Pharmaceutical Sciences, vol. 5, pp. 67–69, 2006. View at Google Scholar
  32. H. V. Annegowda, M. N. Mordi, S. Ramanathan, and S. M. Mansor, “Analgesic and antioxidant properties of ethanolic extract of Terminalia catappa L. leaves,” International Journal of Pharmacology, vol. 6, no. 6, pp. 910–915, 2010. View at Google Scholar · View at Scopus
  33. H. K. Kim, S. K. Park, J. L. Zhou et al., “Reactive oxygen species (ROS) play an important role in a rat model of neuropathic pain,” Pain, vol. 111, no. 1-2, pp. 116–124, 2004. View at Publisher · View at Google Scholar · View at Scopus
  34. T. Okuda, “Flavonoids,” in Chemistry of Organic Natural Products, H. Mitsuhashi, O. Tanaka, S. Nazoe, and M. Nagai Nankodo, Eds., pp. 219–228, Tokyo, Japan, 1962. View at Google Scholar
  35. W. R. Sawadogo, R. Boly, M. Lompo et al., “Anti-inflammatory, analgesic and antipyretic activities of Dicliptera verticillata,” International Journal of Pharmacology, vol. 2, no. 4, pp. 435–438, 2006. View at Publisher · View at Google Scholar · View at Scopus
  36. C. Jothimanivannan, R. S. Kumar, and N. Subramanian, “Anti-inflammatory and analgesic activities of ethanol extract of aerial parts of Justicia gendarussa Burm,” International Journal of Pharmacology, vol. 6, pp. 278–283, 2010. View at Google Scholar
  37. J. R. S. Hoult, M. A. Moroney, and M. Paya, “Actions of flavonoids and coumarins on lipoxygenase and cyclooxygenase,” Methods in Enzymology, vol. 234, pp. 443–454, 1994. View at Publisher · View at Google Scholar · View at Scopus