Table of Contents Author Guidelines Submit a Manuscript
Advances in Pharmacological Sciences
Volume 2012 (2012), Article ID 614046, 8 pages
Review Article

Molecular Mechanisms Underlying Anti-Inflammatory Actions of 6-(Methylsulfinyl)hexyl Isothiocyanate Derived from Wasabi (Wasabia japonica)

1Department of Pharmacognosy, Faculty of Pharmaceutical Sciences, Nagasaki International University, 2825-7 Huis Ten Bosch, Sasebo, Nagasaki 859-3298, Japan
2Course of Biological Science and Technology, United Graduate School of Agricultural Sciences, Kagoshima University, Korimoto 1-21-24, Kagoshima 890-0065, Japan

Received 25 May 2012; Accepted 15 July 2012

Academic Editor: Alessandra Bitto

Copyright © 2012 Takuhiro Uto et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


6-(Methylsulfinyl)hexyl isothiocyanate (6-MSITC) is a major bioactive compound in wasabi (Wasabia japonica), which is a typical Japanese pungent spice. Recently, in vivo and in vitro studies demonstrated that 6-MSITC has several biological properties, including anti-inflammatory, antimicrobial, antiplatelet, and anticancer effects. We previously reported that 6-MSITC strongly suppresses cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS), and cytokines, which are important factors that mediate inflammatory processes. Moreover, molecular analysis demonstrated that 6-MSITC blocks the expressions of these factors by suppressing multiple signal transduction pathways to attenuate the activation of transcriptional factors. Structure-activity relationships of 6-MSITC and its analogues containing an isothiocyanate group revealed that methylsulfinyl group and the length of alkyl chain of 6-MSITC might be related to high inhibitory potency. In this paper, we review the anti-inflammatory properties of 6-MSITC and discuss potential molecular mechanisms focusing on inflammatory responses by macrophages.