Table of Contents Author Guidelines Submit a Manuscript
Advances in Pharmacological Sciences
Volume 2012, Article ID 614046, 8 pages
http://dx.doi.org/10.1155/2012/614046
Review Article

Molecular Mechanisms Underlying Anti-Inflammatory Actions of 6-(Methylsulfinyl)hexyl Isothiocyanate Derived from Wasabi (Wasabia japonica)

1Department of Pharmacognosy, Faculty of Pharmaceutical Sciences, Nagasaki International University, 2825-7 Huis Ten Bosch, Sasebo, Nagasaki 859-3298, Japan
2Course of Biological Science and Technology, United Graduate School of Agricultural Sciences, Kagoshima University, Korimoto 1-21-24, Kagoshima 890-0065, Japan

Received 25 May 2012; Accepted 15 July 2012

Academic Editor: Alessandra Bitto

Copyright © 2012 Takuhiro Uto et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. L. Rask, E. Andréasson, B. Ekbom, S. Eriksson, B. Pontoppidan, and J. Meijer, “Myrosinase: gene family evolution and herbivore defense in Brassicaceae,” Plant Molecular Biology, vol. 42, no. 1, pp. 93–113, 2000. View at Publisher · View at Google Scholar · View at Scopus
  2. R. J. Hopkins, N. M. Van Dam, and J. J. A. Van Loon, “Role of glucosinolates in insect-plant relationships and multitrophic interactions,” Annual Review of Entomology, vol. 54, pp. 57–83, 2009. View at Publisher · View at Google Scholar · View at Scopus
  3. K. J. Woo and T. K. Kwon, “Sulforaphane suppresses lipopolysaccharide-induced cyclooxygenase-2 (COX-2) expression through the modulation of multiple targets in COX-2 gene promoter,” International Immunopharmacology, vol. 7, no. 13, pp. 1776–1783, 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. Y. Zhang, “The molecular basis that unifies the metabolism, cellular uptake and chemopreventive activities of dietary isothiocyanates,” Carcinogenesis, vol. 33, no. 1, pp. 2–9, 2012. View at Publisher · View at Google Scholar
  5. S. L. Navarro, F. Li, and J. W. Lampe, “Mechanisms of action of isothiocyanates in cancer chemoprevention: an update,” Food & Function, vol. 2, no. 10, pp. 579–587, 2011. View at Publisher · View at Google Scholar
  6. K. L. Cheung and A. N. Kong, “Molecular targets of dietary phenethyl isothiocyanate and sulforaphane for cancer chemoprevention,” AAPS Journal, vol. 12, no. 1, pp. 87–97, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. M. Kojima, “Pungent components and functional ingredient of wasabi,” Food Process, vol. 23, pp. 32–35, 1988. View at Google Scholar
  8. K. Isshiki and K. Tokuoka, “Allyl isothiocyanate and wholesomeness of food,” Japanese Journal of Food Microbiology, vol. 12, pp. 1–6, 1993. View at Google Scholar
  9. H. Kumagai, N. Kashima, T. Seki, H. Sakurai, K. Ishii, and T. Ariga, “Analysis of volatile components in essential oil of upland Wasabi and their inhibitory effects on platelet aggregation,” Bioscience, Biotechnology and Biochemistry, vol. 58, no. 12, pp. 2131–2135, 1994. View at Google Scholar · View at Scopus
  10. N. Tanida, A. Kawaura, A. Takahashi, K. Sawada, and T. Shimoyama, “Suppressive effect of Wasabi (pungent Japanese spice) on gastric carcinogenesis induced by MNNG in rats,” Nutrition and Cancer, vol. 16, no. 1, pp. 53–58, 1991. View at Google Scholar · View at Scopus
  11. T. Uto, M. Fujii, and D. X. Hou, “Inhibition of lipopolysaccharide-induced cyclooxygenase-2 transcription by 6-(methylsulfinyl) hexyl isothiocyanate, a chemopreventive compound from Wasabia japonica (Miq.) Matsumura, in mouse macrophages,” Biochemical Pharmacology, vol. 70, no. 12, pp. 1772–1784, 2005. View at Publisher · View at Google Scholar · View at Scopus
  12. T. Uto, M. Fujii, and D. X. Hou, “6-(Methylsulfinyl)hexyl isothiocyanate suppresses inducible nitric oxide synthase expression through the inhibition of Janus kinase 2-mediated JNK pathway in lipopolysaccharide-activated murine macrophages,” Biochemical Pharmacology, vol. 70, no. 8, pp. 1211–1221, 2005. View at Publisher · View at Google Scholar · View at Scopus
  13. T. Uto, M. Fujii, and D. X. Hou, “Effects of 6-(methylsulfinyl)hexyl isothiocyanate on cyclooxygenase-2 expression induced by lipopolysaccharide, interferon-gamma and 12-O-tetradecanoylphorbol-13-acetate,” Oncology Reports, vol. 17, no. 1, pp. 233–238, 2007. View at Google Scholar · View at Scopus
  14. N. Hasegawa, Y. Matsumoto, A. Hoshino, and K. Iwashita, “Comparison of effects of Wasabia japonica and allyl isothiocyanate on the growth of four strains of Vibrio parahaemolyticus in lean and fatty tuna meat suspensions,” International Journal of Food Microbiology, vol. 49, no. 1-2, pp. 27–34, 1999. View at Publisher · View at Google Scholar · View at Scopus
  15. Y. Morimitsu, K. Hayashi, Y. Nakagawa et al., “Antiplatelet and anticancer isothiocyanates in Japanese domestic horseradish, Wasabi,” Mechanisms of Ageing and Development, vol. 116, no. 2-3, pp. 125–134, 2000. View at Publisher · View at Google Scholar · View at Scopus
  16. D. X. Hou, M. Fukuda, M. Fujii, and Y. Fuke, “Induction of NADPH:quinone oxidoreductase in murine hepatoma cells by methylsulfinyl isothiocyanates: methyl chain length-activity study,” International Journal of Molecular Medicine, vol. 6, no. 4, pp. 441–444, 2000. View at Google Scholar · View at Scopus
  17. D. X. Hou, M. Fukuda, M. Fujii, and Y. Fuke, “Transcriptional regulation of nicotinamide adenine dinucleotide phosphate: quinone oxidoreductase in murine hepatoma cells by 6-(methylsufinyl)hexyl isothiocyanate, an active principle of wasabi (Eutrema wasabi Maxim),” Cancer Letters, vol. 161, no. 2, pp. 195–200, 2000. View at Publisher · View at Google Scholar · View at Scopus
  18. D. X. Hou, Y. Korenori, S. Tanigawa et al., “Dynamics of Nrf2 and Keap1 in ARE-mediated NQO1 expression by wasabi 6-(methylsulfinyl)hexyl isothiocyanate,” Journal of Agricultural and Food Chemistry, vol. 59, no. 22, pp. 11975–11882.
  19. K. Ina, H. Ina, M. Ueda, A. Yagi, and I. Kishima, “ω-Methylthioalkyl isothiocyanates in Wasabi,” Agricultural Biology and Chemistry, vol. 53, no. 2, pp. 537–538, 1989. View at Google Scholar
  20. H. Etoh, A. Nishimura, R. Takasawa et al., “ω-Methylsulfinylalkyl isothiocyanates in wasabi, Wasabia japonica Matsum,” Agricultural Biology and Chemistry, vol. 54, no. 6, pp. 1587–1589, 1990. View at Google Scholar
  21. M. Hara, K. Mochizuki, S. Kaneko et al., “Changes in pungent components of two Wasabia japonica Matsum. cultivars during the cultivation period,” Food Science and Technology Research, vol. 9, no. 3, pp. 288–291, 2003. View at Google Scholar · View at Scopus
  22. H. Ono, K. Adachi, Y. Fuke, and K. Shinohara, “Purification and structural analysis of substances in wasabi (Eutrema wasabi maxim.) that suppress the growth of MKN-28 human stomach cancer cells,” Nippon Shokuhin Kagaku Kogaku Kaishi, vol. 43, no. 10, pp. 1092–1097, 1996. View at Google Scholar · View at Scopus
  23. Y. Morimitsu, Y. Nakagawa, K. Hayashi et al., “A sulforaphane analogue that potently activates the Nrf2-dependent detoxification pathway,” The Journal of Biological Chemistry, vol. 277, no. 5, pp. 3456–3463, 2002. View at Publisher · View at Google Scholar · View at Scopus
  24. M. D. Maines, “The heme oxygenase system: a regulator of second messenger gases,” Annual Review of Pharmacology and Toxicology, vol. 37, pp. 517–554, 1997. View at Google Scholar · View at Scopus
  25. L. Boscá, M. Zeini, P. G. Través, and S. Hortelano, “Nitric oxide and cell viability in inflammatory cells: a role for NO in macrophage function and fate,” Toxicology, vol. 208, no. 2, pp. 249–258, 2005. View at Publisher · View at Google Scholar · View at Scopus
  26. Z. Zhu, S. Zhong, and Z. Shen, “Targeting the inflammatory pathways to enhance chemotherapy of cancer,” Cancer Biology and Therapy, vol. 12, no. 2, pp. 95–105, 2011. View at Publisher · View at Google Scholar · View at Scopus
  27. B. Hinz and K. Brune, “Cyclooxygenase-2–0 years later,” Journal of Pharmacology and Experimental Therapeutics, vol. 300, no. 2, pp. 367–375, 2002. View at Publisher · View at Google Scholar · View at Scopus
  28. R. G. Molloy, J. A. Mannick, and M. L. Rodrick, “Cytokines, sepsis and immunomodulation,” British Journal of Surgery, vol. 80, no. 3, pp. 289–297, 1993. View at Google Scholar · View at Scopus
  29. C. D. Funk, L. B. Funk, M. E. Kennedy, A. S. Pong, and G. A. Fitzgerald, “Human platelet/erythroleukemia cell prostaglandin G/H synthase: cDNA cloning, expression, and gene chromosomal assignment,” FASEB Journal, vol. 5, no. 9, pp. 2304–2312, 1991. View at Google Scholar · View at Scopus
  30. S. L. Hempel, M. M. Monick, and G. W. Hunninghake, “Lipopolysaccharide induces prostaglandin H synthase-2 protein and mRNA in human alveolar macrophages and blood monocytes,” Journal of Clinical Investigation, vol. 93, no. 1, pp. 391–396, 1994. View at Google Scholar · View at Scopus
  31. L. J. Crofford, R. L. Wilder, A. P. Ristimaki et al., “Cyclooxygenase-1 and -2 expression in rheumatoid synovial tissues. Effects of interleukin-1β, phorbol ester, and corticosteroids,” Journal of Clinical Investigation, vol. 93, no. 3, pp. 1095–1101, 1994. View at Google Scholar · View at Scopus
  32. J. R. Mestre, P. J. Mackrell, D. E. Rivadeneira, P. P. Stapleton, T. Tanabe, and J. M. Daly, “Redundancy in the signaling pathways and promoter elements regulating cyclooxygenase-2 gene expression in endotoxin-treated macrophage/monocytic cells,” The Journal of Biological Chemistry, vol. 276, no. 6, pp. 3977–3982, 2001. View at Publisher · View at Google Scholar · View at Scopus
  33. M. Caivano, B. Gorgoni, P. Cohen, and V. Poli, “The induction of cyclooxygenase-2 mRNA in macrophages is biphasic and requires both CCAAT enhancer-binding protein beta (C/EBP beta) and C/EBP delta transcription factors,” The Journal of Biological Chemistry, vol. 276, no. 52, pp. 48693–48701, 2001. View at Publisher · View at Google Scholar · View at Scopus
  34. H. Inoue, C. Yokoyama, S. Hara, Y. Tone, and T. Tanabe, “Transcriptional regulation of human prostaglandin-endoperoxide synthase-2 gene by lipopolysaccharide and phorbol ester in vascular endothelial cells. Involvement of both nuclear factor for interleukin-6 expression site and cAMP response element,” The Journal of Biological Chemistry, vol. 270, no. 42, pp. 24965–24971, 1995. View at Publisher · View at Google Scholar · View at Scopus
  35. H. Inoue, T. Nanayama, S. Hara, C. Yokoyama, and T. Tanabe, “The cyclic AMP response element plays an essential role in the expression of the human prostaglandin-endoperoxide synthase 2 gene in differentiated U937 monocytic cells,” FEBS Letters, vol. 350, no. 1, pp. 51–54, 1994. View at Publisher · View at Google Scholar · View at Scopus
  36. H. Inoue and T. Tanabe, “Transcriptional role of the nuclear factor κB site in the induction by lipopolysaccharide and suppression by dexamethasone of cyclooxygenase-2 in U937 cells,” Biochemical and Biophysical Research Communications, vol. 244, no. 1, pp. 143–148, 1998. View at Publisher · View at Google Scholar · View at Scopus
  37. S. Moncada, R. M. J. Palmer, and E. A. Higgs, “Nitric oxide: physiology, pathophysiology, and pharmacology,” Pharmacological Reviews, vol. 43, no. 2, pp. 109–142, 1991. View at Google Scholar · View at Scopus
  38. W. K. Alderton, C. E. Cooper, and R. G. Knowles, “Nitric oxide synthases: structure, function and inhibition,” Biochemical Journal, vol. 357, no. 3, pp. 593–615, 2001. View at Publisher · View at Google Scholar · View at Scopus
  39. K. D. Kröncke, K. Fehsel, and V. Kolb-Bachofen, “Inducible nitric oxide synthase in human diseases,” Clinical and Experimental Immunology, vol. 113, no. 2, pp. 147–156, 1998. View at Publisher · View at Google Scholar · View at Scopus
  40. R. B. Lorsbach, W. J. Murphy, C. J. Lowenstein, S. H. Snyder, and S. W. Russell, “Expression of the nitric oxide synthase gene in mouse macrophages activated for tumor cell killing. Molecular basis for the synergy between interferon-γ and lipopolysaccharide,” The Journal of Biological Chemistry, vol. 268, no. 3, pp. 1908–1913, 1993. View at Google Scholar · View at Scopus
  41. R. Korhonen, A. Lahti, H. Kankaanranta, and E. Moilanen, “Nitric oxide production and signaling in inflammation,” Current Drug Targets, vol. 4, no. 4, pp. 471–479, 2005. View at Publisher · View at Google Scholar · View at Scopus
  42. H. Ohshima and H. Bartsch, “Chronic infections and inflammatory processes as cancer risk factors: possible role of nitric oxide in carcinogenesis,” Mutation Research, vol. 305, no. 2, pp. 253–264, 1994. View at Publisher · View at Google Scholar · View at Scopus
  43. R. M. J. Palmer, D. S. Ashton, and S. Moncada, “Vascular endothelial cells synthesize nitric oxide from L-arginine,” Nature, vol. 333, no. 6174, pp. 664–666, 1988. View at Google Scholar · View at Scopus
  44. C. Nathan and Q. W. Xie, “Nitric oxide synthases: roles, tolls, and controls,” Cell, vol. 78, no. 6, pp. 915–918, 1994. View at Publisher · View at Google Scholar · View at Scopus
  45. Y. Kobayashi, “The regulatory role of nitric oxide in proinflammatory cytokine expression during the induction and resolution of inflammation,” Journal of Leukocyte Biology, vol. 88, no. 6, pp. 1157–1162, 2010. View at Publisher · View at Google Scholar · View at Scopus
  46. J. MacMicking, Q. W. Xie, and C. Nathan, “Nitric oxide and macrophage function,” Annual Review of Immunology, vol. 15, pp. 323–350, 1997. View at Publisher · View at Google Scholar · View at Scopus
  47. H. Maeda and T. Akaike, “Nitric oxide and oxygen radicals in infection, inflammation and cancer,” Biochemistry (Moscow), vol. 63, no. 7, pp. 854–865, 1998. View at Google Scholar · View at Scopus
  48. P. K. Lala and C. Chakraborty, “Role of nitric oxide in carcinogenesis and tumour progression,” The Lancet Oncology, vol. 2, no. 3, pp. 149–156, 2001. View at Publisher · View at Google Scholar · View at Scopus
  49. T. Noshita, Y. Kidachi, H. Funayama, H. Kiyota, H. Yamaguchi, and K. Ryoyama, “Anti-nitric oxide production activity of isothiocyanates correlates with their polar surface area rather than their lipophilicity,” European Journal of Medicinal Chemistry, vol. 44, no. 12, pp. 4931–4936, 2009. View at Publisher · View at Google Scholar · View at Scopus
  50. A. D. Luster, “Mechanisms of disease: chemokines—chemotactic cytokines that mediate inflammation,” The New England Journal of Medicine, vol. 338, no. 7, pp. 436–445, 1998. View at Publisher · View at Google Scholar · View at Scopus
  51. J. Chen, T. Uto, S. Tanigawa, T. Yamada-Kato, M. Fujii, and D. X. Hou, “Microarray-based determination of anti-inflammatory genes targeted by 6-(methylsulfinyl)hexyl isothiocyanate in macrophages,” Experimental and Therapeutic Medicine, vol. 1, no. 1, pp. 33–40, 2010. View at Publisher · View at Google Scholar · View at Scopus
  52. C. Tsatsanis, A. Androulidaki, M. Venihaki, and A. N. Margioris, “Signalling networks regulating cyclooxygenase-2,” International Journal of Biochemistry and Cell Biology, vol. 38, no. 10, pp. 1654–1661, 2006. View at Publisher · View at Google Scholar · View at Scopus
  53. P. Huang, J. Han, and L. Hui, “MAPK signaling in inflammation-associated cancer development,” Protein and Cell, vol. 1, no. 3, pp. 218–226, 2010. View at Publisher · View at Google Scholar · View at Scopus
  54. S. K. Dower and E. E. Qwarnstrom, “Signalling networks, inflammation and innate immunity,” Biochemical Society Transactions, vol. 31, no. 6, pp. 1462–1471, 2003. View at Google Scholar · View at Scopus
  55. T. C. Hsu, M. R. Young, J. Cmarik, and N. H. Colburn, “Activator protein 1 (AP-1)- and nuclear factor κB (NF-κB)-dependent transcriptional events in carcinogenesis,” Free Radical Biology and Medicine, vol. 28, no. 9, pp. 1338–1348, 2000. View at Publisher · View at Google Scholar · View at Scopus
  56. A. K. Lee, S. H. Sung, Y. C. Kim, and S. G. Kim, “Inhibition of lipopolysaccharide-inducible nitric oxide synthase, TNF-α and COX-2 expression by sauchinone effects on I-κBα phosphorylation, C/EBP and AP-1 activation,” British Journal of Pharmacology, vol. 139, no. 1, pp. 11–20, 2003. View at Publisher · View at Google Scholar · View at Scopus
  57. B. Thomas, F. Berenbaum, L. Humbert et al., “Critical role of C/EBPδ and C/EBPβ factors in the stimulation of the cyclooxygenase-2 gene transcription by interleukin-1β in articular chondrocytes,” European Journal of Biochemistry, vol. 267, no. 23, pp. 6798–6809, 2000. View at Publisher · View at Google Scholar · View at Scopus
  58. F. D'Acquisto, T. Iuvone, L. Rombolà, L. Sautebin, M. Di Rosa, and R. Carnuccio, “Involvement of NF-κB in the regulation of cyclooxygenase-2 protein expression in LPS-stimulated J774 macrophages,” FEBS Letters, vol. 418, no. 1-2, pp. 175–178, 1997. View at Publisher · View at Google Scholar · View at Scopus
  59. K. Subbaramaiah, P. A. Cole, and A. J. Dannenberg, “Retinoids and carnosol suppress cyclooxygenase-2 transcription by CREB-binding protein/p300-dependent and -independent mechanisms,” Cancer Research, vol. 62, no. 9, pp. 2522–2530, 2002. View at Google Scholar · View at Scopus
  60. A. G. Eliopoulos, C. D. Dumitru, C. C. Wang, J. Cho, and P. N. Tsichlis, “Induction of COX-2 by LPS in macrophages is regulated by Tpl2-dependent CREB activation signals,” EMBO Journal, vol. 21, no. 18, pp. 4831–4840, 2002. View at Publisher · View at Google Scholar · View at Scopus
  61. Y. H. Cho, C. H. Lee, and S. G. Kim, “Potentiation of lipopolysaccharide-inducible cyclooxygenase 2 expression by C2-ceramide via c-Jun N-terminal kinase-mediated activation of CCAAT/enhancer binding protein β in macrophages,” Molecular Pharmacology, vol. 63, no. 3, pp. 512–523, 2003. View at Publisher · View at Google Scholar · View at Scopus
  62. M. Hecker, C. Preiß, and V. B. Schini-Kerth, “Induction by staurosporine of nitric oxide synthase expression in vascular smooth muscle cells: role of NF-κB, CREB and C/EBPβ,” British Journal of Pharmacology, vol. 120, no. 6, pp. 1067–1074, 1997. View at Publisher · View at Google Scholar · View at Scopus
  63. J. Marks-Konczalik, S. C. Chu, and J. Moss, “Cytokine-mediated transcriptional induction of the human inducible nitric oxide synthase gene requires both activator protein 1 and nuclear factor κB-binding sites,” The Journal of Biological Chemistry, vol. 273, no. 35, pp. 22201–22208, 1998. View at Publisher · View at Google Scholar · View at Scopus
  64. Q. W. Xie, Y. Kashiwabara, and C. Nathan, “Role of transcription factor NF-κB/Rel in induction of nitric oxide synthase,” The Journal of Biological Chemistry, vol. 269, no. 7, pp. 4705–4708, 1994. View at Google Scholar · View at Scopus
  65. C. S. Kim, T. Kawada, B. S. Kim et al., “Capsaicin exhibits anti-inflammatory property by inhibiting IκB-α degradation in LPS-stimulated peritoneal macrophages,” Cellular Signalling, vol. 15, no. 3, pp. 299–306, 2003. View at Publisher · View at Google Scholar · View at Scopus
  66. Y. C. Liang, Y. T. Huang, S. H. Tsai, S. Y. Lin-Shiau, C. F. Chen, and J. K. Lin, “Suppression of inducible cyclooxygenase and inducible nitric oxide synthase by apigenin and related flavonoids in mouse macrophages,” Carcinogenesis, vol. 20, no. 10, pp. 1945–1952, 1999. View at Publisher · View at Google Scholar · View at Scopus
  67. K. Imada and W. J. Leonard, “The Jak-STAT pathway,” Molecular Immunology, vol. 37, no. 1-2, pp. 1–11, 2000. View at Publisher · View at Google Scholar · View at Scopus
  68. P. Kovarik, M. Mangold, K. Ramsauer et al., “Specificity of signaling by STAT1 depends on SH2 and C-terminal domains that regulate Ser727 phosphorylation, differentially affecting specific target gene expression,” EMBO Journal, vol. 20, no. 1-2, pp. 91–100, 2001. View at Publisher · View at Google Scholar · View at Scopus
  69. R. W. Ganster, B. S. Taylor, L. Shao, and D. A. Geller, “Complex regulation of human inducible nitric oxide synthase gene transcription by Stat 1 and NF-κB,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 15, pp. 8638–8643, 2001. View at Publisher · View at Google Scholar · View at Scopus
  70. Z. Wen, Z. Zhong, and J. E. Darnell Jr., “Maximal activation of transcription by Stat1 and Stat3 requires both tyrosine and serine phosphorylation,” Cell, vol. 82, no. 2, pp. 241–250, 1995. View at Google Scholar · View at Scopus
  71. Y. Zhang, P. Talalay, C. G. Cho, and G. H. Posner, “A major inducer of anticarcinogenic protective enzymes from broccoli: isolation and elucidation of structure,” Proceedings of the National Academy of Sciences of the United States of America, vol. 89, no. 6, pp. 2399–2403, 1992. View at Google Scholar · View at Scopus
  72. T. Nomura, S. Shinoda, T. Yamori et al., “Selective sensitivity to wasabi-derived 6-(methylsulfinyl)hexyl isothiocyanate of human breast cancer and melanoma cell lines studied in vitro,” Cancer Detection and Prevention, vol. 29, no. 2, pp. 155–160, 2005. View at Publisher · View at Google Scholar · View at Scopus
  73. S. Löhr, C. Jacobi, A. Johann, G. Gottschalk, and A. De Meijere, “Cyclopropyl building blocks in organic synthesis, 57—convenient syntheses and biological activity of novel ω-trans-(bicyclopropyl)-and ω-(bicyclopropylidenyl)-substituted fatty acids and their derivatives,” European Journal of Organic Chemistry, no. 17, pp. 2979–2989, 2000. View at Google Scholar · View at Scopus
  74. T. J. Ding, L. Zhou, and X. P. Cao, “A facile and green synthesis of sulforaphane,” Chinese Chemical Letters, vol. 17, no. 9, pp. 1152–1154, 2006. View at Google Scholar · View at Scopus
  75. Y. Zhang and P. Talalay, “Mechanism of differential potencies of isothiocyanates as inducers of anticarcinogenic Phase 2 enzymes,” Cancer Research, vol. 58, no. 20, pp. 4632–4639, 1998. View at Google Scholar · View at Scopus
  76. Y. Zhang, “Role of glutathione in the accumulation of anticarcinogenic isothiocyanates and their glutathione conjugates by murine hepatoma cells,” Carcinogenesis, vol. 21, no. 6, pp. 1175–1182, 2000. View at Google Scholar · View at Scopus
  77. L. Mi, A. J. Di Pasqua, and F. L. Chung, “Proteins as binding targets of isothiocyanates in cancer prevention,” Carcinogenesis, vol. 32, no. 10, pp. 1405–1413, 2011. View at Publisher · View at Google Scholar
  78. S. M. Deneke and B. L. Fanburg, “Regulation of cellular glutathione,” American Journal of Physiology, vol. 257, no. 4, pp. L163–L173, 1989. View at Google Scholar
  79. I. A. Cotgreave and R. G. Gerdes, “Recent trends in glutathione biochemistry-glutathione-protein interactions: a molecular link between oxidative stress and cell proliferation?” Biochemical and Biophysical Research Communications, vol. 242, no. 1, pp. 1–9, 1998. View at Publisher · View at Google Scholar · View at Scopus
  80. I. Rahman and W. MacNee, “Regulation of redox glutathione levels and gene transcription in lung inflammation: therapeutic approaches,” Free Radical Biology and Medicine, vol. 28, no. 9, pp. 1405–1420, 2000. View at Publisher · View at Google Scholar · View at Scopus