Table of Contents Author Guidelines Submit a Manuscript
Advances in Pharmacological Sciences
Volume 2013, Article ID 510298, 22 pages
http://dx.doi.org/10.1155/2013/510298
Review Article

The Genus Spilanthes Ethnopharmacology, Phytochemistry, and Pharmacological Properties: A Review

1Department of Pharmacy, Periyar Maniammai University, Vallam, Thanjavur, TamilNadu 613403, India
2Pharmacognosy and Ethnopharmacology Division, National Botanical Research Institute, Lucknow 226001, India
3Amity Institute of Herbal Product Research, Trivandrum, Kerala 695005, India

Received 6 September 2013; Accepted 23 September 2013

Academic Editor: Eduardo Munoz

Copyright © 2013 Jayaraj Paulraj et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. W. Christophe, Ethnopharmacology of Medicinal Plants. Asia and the Pacific, Humana Press, Totowa, NJ, USA, 2006.
  2. S. Prachayasittikul, S. Suphapong, A. Worachartcheewan, R. Lawung, S. Ruchirawat, and V. Prachayasittikul, “Bioactive metabolites from Spilanthes acmella Murr,” Molecules, vol. 14, no. 2, pp. 850–867, 2009. View at Publisher · View at Google Scholar · View at Scopus
  3. E. S. James, “Market Assessment of Selected Colombian Natural Products for Putumayo. PHASE I,” 2002, http://pdf.usaid.gov/pdf_docs/PNADS460.pdf.
  4. USPTO, “Patent Full-Text and Image Database. Patents (Spilanthes),” 2013, http://patft.uspto.gov/netahtml/PTO/search-bool.html.
  5. “A. Vogel herbal-remedies,” 2013, http://www.avogel.co.uk/herbal-remedies/spilanthes/.
  6. Herb Pharm, 2013, http://www.herb-pharm.com/.
  7. Gattefosse, 2013, http://www.gattefosse.com/node.php?articleid=42?
  8. Laboratoires SVR, 2013, http://www.labo-svr.com/.
  9. Anonymous, 2013, http://data.gbif.org/species/browse/taxon/13219744/.
  10. R. A. Harold, M. Powell, R. M. King et al., “Chromosome numbers,” in Compositae, XII: Heliantheae, Smithsonian Institution Press, Washington, DC, USA, 1981. View at Google Scholar
  11. D. M. A. Jayaweer, Medicinal Plants. Part III, National Science Council of Sri Lanka, Columbo, Sri Lanka, 1981.
  12. P. Altaffer, Herbs and Botanicals from South America, Nutraceut World, Ramsey, NJ, USA, 2006.
  13. N. Hind and N. Biggs, “Acmella oleracea compositae,” Curtis's Botanical Magazine, vol. 20, no. 1, pp. 31–39, 2003. View at Google Scholar
  14. H. Cassini, “Spilanthes,” in Dictionnaire des Sciences Naturelles, vol. 24, pp. 328–331, Le Normant, Paris, France, 1822. View at Google Scholar
  15. R. K. Jansen, “Systematics of Spilanthes (Compositae-Heliantheae),” Systematic Botany, vol. 6, pp. 231–232, 1981. View at Google Scholar
  16. V. V. Sivarajan and C. Remesan, “The genus Spilanthes Jacq. (Composite-Heliantheae) in India,” Journal of Economic & Taxonomic Botany, vol. 10, pp. 1–3, 1987. View at Google Scholar
  17. C. P. Raju and R. R. Raju, “Some rare and interesting Asteraceous taxa from the forests of Andhra Pradesh, India,” Journal of Economic & Taxonomic Botany, vol. 20, pp. 261–263, 1996. View at Google Scholar
  18. S. Sundara Rajan, “Embryological studies in compositae. IV. A contribution to the life history of Spilanthes acmilla, Murr. (S. calva, Wt. Ic.),” Proceedings of the Indian Academy of Science, vol. 79, no. 6, pp. 267–282, 1974. View at Google Scholar · View at Scopus
  19. S. Chandra, H. P. Sharma, R. Chandra, and S. Jha, “Effect of 2,4-D and BAP on Callusing response of Spilanthus Paniculata (D.C) Jansen,” Int. J. Mendel, vol. 23, no. 3-4, pp. 129–130, 2006. View at Google Scholar
  20. R. N. Chopra, S. L. Nayara, and I. C. Chopra, Glossary of Indian Medicinal Plants, Council of Scientific and Industrial Research, New Delhi, India, 1956.
  21. Anonymous, The Wealth of India: A Dictionary of Indian Raw Materials and Industrial Products, vol. 10, Council of Scientific & Industrial Research, New Delhi, India, 1989.
  22. R. Verpoorte, P. J. Houghton, M. Heinrich et al., “Editorial,” Journal of Ethnopharmacology, vol. 103, no. 3, pp. 309–310, 2006. View at Publisher · View at Google Scholar · View at Scopus
  23. N. Nakatani and M. Nagashima, “Pungent alkamides from Spilanthes acmella var. oleracea Clarke,” Bioscience, Biotechnology, and Biochemistry, vol. 56, no. 5, pp. 759–762, 1992. View at Google Scholar
  24. C. P. Kala, “Ethnomedicinal botany of the Apatani in the Eastern Himalayan region of India,” Journal of Ethnobiology and Ethnomedicine, vol. 1, article no. 11, pp. 1–8, 2005. View at Publisher · View at Google Scholar · View at Scopus
  25. S. Ignacimuthu, M. Ayyanar, and K. Sankarasivaraman, “Ethnobotanical study of medicinal plants used by Paliyar tribals in Theni district of Tamil Nadu, India,” Fitoterapia, vol. 79, no. 7-8, pp. 562–568, 2008. View at Publisher · View at Google Scholar · View at Scopus
  26. H. C. Ong and M. Nordiana, “Malay ethno-medico botany in Machang, Kelantan, Malaysia,” Fitoterapia, vol. 70, no. 5, pp. 502–513, 1999. View at Publisher · View at Google Scholar · View at Scopus
  27. E. Noumi and T. W. Dibakto, “Medicinal plants used for peptic ulcer in the Bangangte region, western Cameroon,” Fitoterapia, vol. 71, no. 4, pp. 406–412, 2000. View at Publisher · View at Google Scholar · View at Scopus
  28. P. Pushpangadan and C. K. Atal, “Ethnomedical and ethnobotanical investigations among some scheduled caste communities of travancore, kerala, india,” Journal of Ethnopharmacology, vol. 16, no. 2-3, pp. 175–190, 1986. View at Google Scholar · View at Scopus
  29. T. Teklehaymanot, M. Giday, G. Medhin, and Y. Mekonnen, “Knowledge and use of medicinal plants by people around Debre Libanos monastery in Ethiopia,” Journal of Ethnopharmacology, vol. 111, no. 2, pp. 271–283, 2007. View at Publisher · View at Google Scholar · View at Scopus
  30. J. M. Dalziel, The Useful Plants of West Tropical Africa, Academic Press, Crown Agents for the Colonies, London, UK, 1937.
  31. M. Kamatenesi-Mugisha and H. Oryem-Origa, “Medicinal plants used to induce labour during childbirth in western Uganda,” Journal of Ethnopharmacology, vol. 109, no. 1, pp. 1–9, 2007. View at Publisher · View at Google Scholar · View at Scopus
  32. Y. C. Kong, J.-X. Xie, and P. P.-H. But, “Fertility regulating agents from traditional Chinese medicines,” Journal of Ethnopharmacology, vol. 15, no. 1, pp. 1–44, 1986. View at Google Scholar · View at Scopus
  33. D. Abbiw, Useful Plants of Ghana, Intermediate Technology, London, UK, 1990.
  34. C. G. Santesson, “Einige Drogen aus dem Kamerungebiet und ihreeinheimische verwendung,” Arkiv för Botanik, vol. 20, pp. 1–34, 1926. View at Google Scholar
  35. K. M. Ahua, J.-R. Ioset, K. N. Ioset, D. Diallo, J. Mauël, and K. Hostettmann, “Antileishmanial activities associated with plants used in the Malian traditional medicine,” Journal of Ethnopharmacology, vol. 110, no. 1, pp. 99–104, 2007. View at Publisher · View at Google Scholar · View at Scopus
  36. N. Bizimana, U. Tietjen, K.-H. Zessin et al., “Evaluation of medicinal plants from Mali for their in vitro and in vivo trypanocidal activity,” Journal of Ethnopharmacology, vol. 103, no. 3, pp. 350–356, 2006. View at Publisher · View at Google Scholar · View at Scopus
  37. E. N. Ndenecho, “Herbalism and resources for the development of ethnopharmacology in Mount Cameroon region,” African Journal of Pharmacy and Pharmacology, vol. 3, no. 3, pp. 078–086, 2009. View at Google Scholar · View at Scopus
  38. S. Raduner, A. Majewska, J.-Z. Chen et al., “Alkylamides from Echinacea are a new class of cannabinomimetics: cannabinoid type 2 receptor-dependent and -independent immunomodulatory effects,” Journal of Biological Chemistry, vol. 281, no. 20, pp. 14192–14206, 2006. View at Publisher · View at Google Scholar · View at Scopus
  39. R. S. Ramsewak, A. J. Erickson, and M. G. Nair, “Bioactive N-isobutylamides from the flower buds of Spilanthes acmella,” Phytochemistry, vol. 51, no. 6, pp. 729–732, 1999. View at Publisher · View at Google Scholar · View at Scopus
  40. I. J. O. Jondiko, “A mosquito larvicide in Spilanthes mauritiana,” Phytochemistry, vol. 25, no. 10, pp. 2289–2290, 1986. View at Google Scholar · View at Scopus
  41. H. Greger, O. Hofer, and A. Werner, “New amides from Spilanthes oleracea—short communication,” Monatshefte für Chemie, vol. 116, no. 2, pp. 273–277, 1984. View at Google Scholar · View at Scopus
  42. J. Borges-Del-Castillo, P. Vazquez-Bueno, M. Secundino-Lucas, A. I. Martinez-Martir, and P. Joseph-Nathan, “The N-2-phenylethylcinnamamide from Spilanthes ocymifolia,” Phytochemistry, vol. 23, no. 11, pp. 2671–2672, 1984. View at Google Scholar · View at Scopus
  43. N. R. Krishnaswamy, S. Prasanna, T. R. Seshandri, and T. N. C. Vedantham, “α- and β-Amyrin esters and sitosterol glucoside from Spilanthes acmella,” Phytochemistry, vol. 14, no. 7, pp. 1666–1667, 1975. View at Google Scholar · View at Scopus
  44. H. P. Tiwari and A. Kakkar, “Phytochemical examination of Spilanthus acemella (Murr.),” Journal of the Indian Chemical Society, vol. 67, no. 9, pp. 784–785, 1990. View at Google Scholar · View at Scopus
  45. J. A. Marshall and N. Cohen, “The structure of alantolactone,” Journal of Organic Chemistry, vol. 29, no. 12, pp. 3727–3729, 1964. View at Google Scholar · View at Scopus
  46. F. Bohlmann, G. W. Ludwig, J. Jakupovic et al., “Spirosesquiterpenlactone, Germacranolide und Eudesmanolide aus Wunderlichia mirabilis,” Liebigs Annalen der Chemie, pp. 228–239, 1984. View at Google Scholar
  47. F. Bohlmann, J. Jakupovic, L. Hartono, R. M. King, and H. Robinson, “A further steiractinolide derivative from Spilanthes leiocarpa,” Phytochemistry, vol. 24, no. 5, pp. 1100–1101, 1985. View at Google Scholar · View at Scopus
  48. A. K. Mondal, S. Parui, and S. Mandal, “Analysis of the free amino acid content in pollen of nine Asteraceae species of known allergenic activity,” Annals of Agricultural and Environmental Medicine, vol. 5, no. 1, pp. 17–20, 1998. View at Google Scholar · View at Scopus
  49. B. Dinda and S. Guha, “Amino acids from Spilanthes paniculata,” Journal of the Indian Chemical Society, vol. 64, no. 6, pp. 376–377, 1987. View at Google Scholar · View at Scopus
  50. R. N. Baruah and P. A. Leclercq, “Characterization of the essential oil from flower heads of Spilanthes acmella,” Journal of Essential Oil Research, vol. 5, no. 6, pp. 693–695, 1993. View at Google Scholar · View at Scopus
  51. R. N. Baruah and M. G. Pathak, “Hydrocarbons from the flower heads of Spilanthes acmella,” Journal of Medicinal and Aromatic Plant Sciences, vol. 3, p. 675, 1999. View at Google Scholar
  52. E. E. Stashenko, M. A. Puertas, and M. Y. Combariza, “Volatile secondary metabolites from Spilanthes americana obtained by simultaneous steam distillation-solvent extraction and supercritical fluid extraction,” Journal of Chromatography A, vol. 752, no. 1-2, pp. 223–232, 1996. View at Publisher · View at Google Scholar · View at Scopus
  53. J. Begum, M. N. I. Bhuiyan, and J. U. Chowdhury, “Essential oil from inflorescence of Spilanthes calva D.C,” Bangladesh Journal of Botany, vol. 37, no. 2, pp. 217–218, 2008. View at Google Scholar · View at Scopus
  54. S. Barman, N. Sahu, S. Deka, S. Dutta, and S. Das, “Anti-inflammatory and analgesic activity of leaves of Spilanthes acmella (ELSA) in experimental animal models,” Pharmacologyonline, vol. 1, pp. 1027–1034, 2009. View at Google Scholar · View at Scopus
  55. A. Chakraborty, R. K. B. Devi, S. Rita, K. Sharatchandra, and T. I. Singh, “Preliminary studies on antiinflammatory and analgesic activities of Spilanthes acmella in experimental animal models,” Indian Journal of Pharmacology, vol. 36, no. 3, pp. 148–150, 2004. View at Google Scholar · View at Scopus
  56. A. H. Ansari, D. K. Mukharya, and V. K. Saxena, “Analgesic study of N-isobutyl-4,5-decadienamide isolated from the flowers of Spilanthes acmella (Murr),” Indian Journal of Pharmaceutical Sciences, vol. 50, no. 2, p. 106, 1988. View at Google Scholar · View at Scopus
  57. K. P. P. Peiris, G. K. J. Silva, and W. D. Ratnasooriya, “Analgesic activity of water extract of Spilanthes acmella flowers on rats,” Journal of Tropical Medicinal Plants, vol. 2, no. 2, pp. 201–204, 2001. View at Google Scholar
  58. W. D. Ratnasooriya, K. P. P. Pieris, U. Samaratunga, and J. R. A. C. Jayakody, “Diuretic activity of Spilanthes acmella flowers in rats,” Journal of Ethnopharmacology, vol. 91, no. 2-3, pp. 317–320, 2004. View at Publisher · View at Google Scholar · View at Scopus
  59. L.-C. Wu, N.-C. Fan, M.-H. Lin et al., “Anti-inflammatory effect of spilanthol from Spilanthes acmella on murine macrophage by down-regulating LPS-induced inflammatory mediators,” Journal of Agricultural and Food Chemistry, vol. 56, no. 7, pp. 2341–2349, 2008. View at Publisher · View at Google Scholar · View at Scopus
  60. M. Vijeyaanandhi, R. Vasuki, J. Anbu, S. Jayakumari, R. Sujatha, and P. Shanmugasundaram, “Antinociceptive and antipyretic activity of aqueous and ethanolic extracts of leaves of Spilanthes acmella,” Biomedicine, vol. 27, no. 3, pp. 109–112, 2007. View at Google Scholar · View at Scopus
  61. A. Chakraborty, B. R. K. Devi, R. Sanjebam, S. Khumbong, and I. S. Thokchom, “Preliminary studies on local anesthetic and antipyretic activities of Spilanthes acmella Murr. in experimental animal models,” Indian Journal of Pharmacology, vol. 42, no. 5, pp. 277–279, 2010. View at Publisher · View at Google Scholar · View at Scopus
  62. S. Badami and K. P. Channabasavaraj, “In vitro antioxidant activity of thirteen medicinal plants of India's Western Ghats,” Pharmaceutical Biology, vol. 45, no. 5, pp. 392–396, 2007. View at Publisher · View at Google Scholar · View at Scopus
  63. P. V. Tan, C. K. Njimi, and J. F. Ayafor, “Screening of some African medicinal plants for antiulcerogenic activity,” Phytotherapy Research, vol. 11, no. 1, pp. 45–47, 1997. View at Google Scholar
  64. O. Wongsawatkul, S. Prachayasittikul, C. Isarankura-Na-Ayudhya, J. Satayavivad, S. Ruchirawat, and V. Prachayasittikul, “Vasorelaxant and antioxidant activities of Spilanthes acmella Murr,” International Journal of Molecular Sciences, vol. 9, no. 12, pp. 2724–2744, 2008. View at Publisher · View at Google Scholar · View at Scopus
  65. B. N. S. Kumar, B. M. V. Swamy, A. Swamy, and A. Murali, “A review on natural diuretics,” Research Journal of Pharmaceutical, Biological and Chemical Sciences, vol. 1, no. 4, pp. 615–634, 2010. View at Google Scholar · View at Scopus
  66. S. R. Suja, P. G. Latha, S. Rajasekharan, and P. Pushpangadan, “Antihepatotoxic activity of Spilanthes ciliata,” Pharmaceutical Biology, vol. 41, no. 7, pp. 536–541, 2003. View at Google Scholar · View at Scopus
  67. L. Shyamal, P. G. Latha, S. R. Suja et al., “Hepatoprotective effect of three herbal extracts on aflatoxin B1-intoxicated rat liver,” Singapore Medical Journal, vol. 51, no. 4, pp. 326–331, 2010. View at Google Scholar · View at Scopus
  68. A. P. Ekanem, M. Wang, J. E. Simon, and D. A. Moreno, “Antiobesity properties of two African plants (Afromomum meleguetta and Spilanthes acmella) by pancreatic lipase inhibition,” Phytotherapy Research, vol. 21, no. 12, pp. 1253–1255, 2007. View at Publisher · View at Google Scholar · View at Scopus
  69. R. V. Savadi, R. Yadav, and N. Yadav, “Study on immunomodulatory activity of ethanolic extract of Spilanthes acmella Murr. leaves,” Indian Journal of Natural Products and Resources, vol. 1, no. 2, pp. 204–207, 2010. View at Google Scholar · View at Scopus
  70. K. Sukumaran and R. Kuttan, “Inhibition of tobacco-induced mutagenesis by eugenol and plant extracts,” Mutation Research, vol. 343, no. 1, pp. 25–30, 1995. View at Google Scholar · View at Scopus
  71. E. A. Mazzio and K. F. A. Soliman, “In vitro screening for the tumoricidal properties of international medicinal herbs,” Phytotherapy Research, vol. 23, no. 3, pp. 385–398, 2009. View at Publisher · View at Google Scholar · View at Scopus
  72. G. M. Raner, S. Cornelious, K. Moulick, Y. Wang, A. Mortenson, and N. B. Cech, “Effects of herbal products and their constituents on human cytochrome P4502E1 activity,” Food and Chemical Toxicology, vol. 45, no. 12, pp. 2359–2365, 2007. View at Publisher · View at Google Scholar · View at Scopus
  73. N. Rajakaruna, C. S. Harris, and G. H. N. Towers, “Antimicrobial activity of plants collected from serpentine outcrops in Sri Lanka,” Pharmaceutical Biology, vol. 40, no. 3, pp. 235–244, 2002. View at Publisher · View at Google Scholar · View at Scopus
  74. J. J. Rojas, V. J. Ochoa, S. A. Ocampo, and J. F. Muñoz, “Screening for antimicrobial activity of ten medicinal plants used in Colombian folkloric medicine: a possible alternative in the treatment of non-nosocomial infections,” BMC Complementary and Alternative Medicine, vol. 6, article no. 2, 2006. View at Publisher · View at Google Scholar · View at Scopus
  75. W. Fabry, P. O. Okemo, and R. Ansorg, “Antibacterial activity of East African medicinal plants,” Journal of Ethnopharmacology, vol. 60, no. 1, pp. 79–84, 1998. View at Publisher · View at Google Scholar · View at Scopus
  76. F. B. Holetz, G. L. Pessini, N. R. Sanches, D. A. G. Cortez, C. V. Nakamura, and B. P. Dias Filho, “Screening of some plants used in the Brazilian folk medicine for the treatment of infectious diseases,” Memorias do Instituto Oswaldo Cruz, vol. 97, no. 7, pp. 1027–1031, 2002. View at Google Scholar · View at Scopus
  77. N. Sawangjaroen, S. Phongpaichit, S. Subhadhirasakul, M. Visutthi, N. Srisuwan, and N. Thammapalerd, “The anti-amoebic activity of some medicinal plants used by AIDS patients in southern Thailand,” Parasitology Research, vol. 98, no. 6, pp. 588–592, 2006. View at Publisher · View at Google Scholar · View at Scopus
  78. S. Phongpaichit, V. Vuddhakul, S. Subhadhirasakul, and C. Wattanapiromsakul, “Evaluation of the antimycobacterial activity of extracts from plants used as self-medication by AIDS patients in Thailand,” Pharmaceutical Biology, vol. 44, no. 1, pp. 71–75, 2006. View at Publisher · View at Google Scholar · View at Scopus
  79. B. Stacy, A HPLC/ESI-MS method developed and validated to evaluate the quantity, identity, and stability of the alkylamides in ethanolic extracts of Spilanthes acmella [M.S. thesis], University of North Carolina, Greensboro, NC, USA, 2007.
  80. A. R. Sabitha and U. S. Murthy, “Antifungal potential of flower head extract of Spilanthes acmella Linn,” African Journal of Biomedical Research, vol. 9, pp. 67–69, 2006,. View at Google Scholar
  81. W. Fabry, P. Okemo, and R. Ansorg, “Fungistatic and fungicidal activity of East African medicinal plants,” Mycoses, vol. 39, no. 1-2, pp. 67–70, 1996. View at Google Scholar · View at Scopus
  82. A. Cavin, W. Dyatmyko, and K. Hostettmann, “Screening of Indonesian plants for antifungal and free radical scavenging activities,” Pharmaceutical Biology, vol. 37, no. 4, pp. 260–268, 1999. View at Google Scholar · View at Scopus
  83. P. Cos, N. Hermans, T. De Bruyne et al., “Further evaluation of Rwandan medicinal plant extracts for their antimicrobial and antiviral activities,” Journal of Ethnopharmacology, vol. 79, no. 2, pp. 155–163, 2002. View at Publisher · View at Google Scholar · View at Scopus
  84. C. Clarkson, V. J. Maharaj, N. R. Crouch et al., “In vitro antiplasmodial activity of medicinal plants native to or naturalised in South Africa,” Journal of Ethnopharmacology, vol. 92, no. 2-3, pp. 177–191, 2004. View at Publisher · View at Google Scholar · View at Scopus
  85. B. Aderbauer, P.-H. Clausen, O. Kershaw, and M. F. Melzig, “In vitro and in vivo trypanocidal effect of lipophilic extracts of medicinal plants from Mali and Burkina Faso,” Journal of Ethnopharmacology, vol. 119, no. 2, pp. 225–231, 2008. View at Publisher · View at Google Scholar · View at Scopus
  86. G. S. Pendse, B. V. Bhide, and N. K. Phalnikar, “Investigation of new plant larvicides with special reference to Spilanthes acmella,” Journal of the Malaria institute of India, vol. 6, no. 3, p. 321, 1946. View at Google Scholar
  87. B. Pitasawat, W. Choochote, D. Kanjanapothi, A. Panthong, A. Jitpakdi, and U. Chaithong, “Screening for larvicidal activity of ten carminative plants,” Southeast Asian Journal of Tropical Medicine and Public Health, vol. 29, no. 3, pp. 660–662, 1998. View at Google Scholar · View at Scopus
  88. H. A. Kadir, M. B. Zakaria, A. A. Kechil, and M. S. Azirun, “Toxicity and electrophysiological effects of Spilanthes acmella Murr. extracts on Periplaneta americana L,” Pesticide Science, vol. 25, no. 4, pp. 329–335, 1989. View at Google Scholar · View at Scopus
  89. A. M. Broussalis, G. E. Ferraro, V. S. Martino, R. Pinzón, J. D. Coussio, and J. C. Alvarez, “Argentine plants as potential source of insecticidal compounds,” Journal of Ethnopharmacology, vol. 67, no. 2, pp. 219–223, 1999. View at Publisher · View at Google Scholar · View at Scopus
  90. S. Ganesan, N. Suresh, and L. Kesaven, “Ethnomedicinal survey of lower Plani hills of Tamilnadu,” Indian Journal of Traditional Knowledge, vol. 3, pp. 299–304, 2004. View at Google Scholar
  91. S. Manuwong, S. Prapaitrakool, P. Nandhasri et al., “The effect of Spilanthes acmella for reduction of postoperative sore throat after endotracheal intubation,” Thai Journal of Anesthesiology, vol. 32, no. 4, pp. 247–254, 2006. View at Google Scholar
  92. M. Rahmatullah, M. A. H. Mollik, M. Harun-or-Rashid et al., “A comparative analysis of medicinal plants used by folk medicinal healers in villages adjoining the Ghaghot, Bangali and Padma rivers of Bangladesh,” American-Eurasian Journal of Sustainable Agriculture, vol. 4, no. 1, pp. 70–85, 2010. View at Google Scholar · View at Scopus
  93. M. A. H. Mollik, M. S. H. Hossan, A. K. Paul, M. Taufiq-Ur-Rahman, R. Jahan, and M. Rahmatullah, “A comparative analysis of medicinal plants used by folk medicinal healers in three districts of Bangladesh and inquiry as to mode of selection of medicinal plants,” Ethnobotany Research and Applications, vol. 8, pp. 195–218, 2010. View at Google Scholar · View at Scopus
  94. M. Panghal, V. Arya, S. Yadav, S. Kumar, and J. P. Yadav, “Indigenous knowledge of medicinal plants used by Saperas community of Khetawas, Jhajjar District, Haryana, India,” Journal of Ethnobiology and Ethnomedicine, vol. 6, article no. 4, 2010. View at Publisher · View at Google Scholar · View at Scopus
  95. P. Revathi and T. Parimelazhagan, “Traditional knowledge on medicinal plants used by the Irula tribe of Hasanur Hills erode district, Tamilnadu India,” Ethnobotanical Leaflets, vol. 14, pp. 136–160, 2010. View at Google Scholar
  96. Y. T. Hsu, “Study on the Chinese drugs used as cancer remedy,” Journal of South Asian Researches, vol. 3, p. 63, 1967. View at Google Scholar
  97. H. M. Patil and V. V. Bhaskar, “Medicinal knowledge system of tribals of Nandurbar District, Maharashtra,” Indian Journal of Traditional Knowledge, vol. 5, no. 3, pp. 327–330, 2006. View at Google Scholar
  98. R. M. Atiqur, S. B. Uddin, and C. C. Wilcock, “Medicinal plants used by Chakma tribe in hill tracts districts of Bangladesh,” Indian Journal of Traditional Knowledge, no. 3, pp. 508–517, 2007. View at Google Scholar
  99. T. D. Balangcod and A. K. D. Balangcod, “Ethnomedical knowledge of plants and healthcare practices among the Kalanguya tribe in Tinoc, Ifugao, Luzon, Philippines,” Indian Journal of Traditional Knowledge, vol. 10, no. 2, pp. 227–238, 2011. View at Google Scholar · View at Scopus
  100. B. A. Jadeja and R. N. Nakar, “Study on ethno-medico botany of weeds from Saurashtra region, Gujarat, India,” Plant Archives, vol. 10, no. 2, pp. 761–765, 2010. View at Google Scholar
  101. M. S. Hossan, A. Hanif, B. Agarwala et al., “Traditional use of medicinal plants in Bangladesh to treat urinary tract infections and sexually transmitted diseases,” Ethnobotany Research and Applications, vol. 8, pp. 61–74, 2010. View at Google Scholar · View at Scopus
  102. V. H. Harsha, S. S. Hebbar, G. R. Hegde, and V. Shripathi, “Ethnomedical knowledge of plants used by Kunabi Tribe of Karnataka in India,” Fitoterapia, vol. 73, no. 4, pp. 281–287, 2002. View at Publisher · View at Google Scholar · View at Scopus
  103. S. B. Badgujar, R. T. Mahajan, and S. B. Kosalge, “Traditional practice for oral health care in Nandurbar District of Maharashtra, India,” Ethnobotanical Leaflets, vol. 12, pp. 1137–1144, 2008. View at Google Scholar
  104. M. L. Chadha, “Indigenous vegetables of India with a potential for improving livelihoods,” in International Symposium on Underutilized Plants for Food Security, Nutrition, Income and Sustainable Development, ISHS Acta Horticulturae 806, 2008, http://www.actahort.org/books/806/806_72.htm.
  105. H. De-la-Cruz, G. Vilcapoma, and P. A. Zevallos, “Ethnobotanical study of medicinal plants used by the Andean people of Canta, Lima, Peru,” Journal of Ethnopharmacology, vol. 111, no. 2, pp. 284–294, 2007. View at Publisher · View at Google Scholar · View at Scopus
  106. E. Acharya and B. Pokhrel, “Ethno-medicinal plants used by Bantar of Bhaudaha, Morang, Nepal,” Our Nature, vol. 4, no. 1, pp. 96–103, 2006. View at Google Scholar
  107. S. Bhattarai, R. P. Chaudhary, and S. L. Taylor, “Ethnomedicinal plants used by the people of Nawalparasi District, Central Nepal,” Our Nature, vol. 7, pp. 82–99, 2009. View at Google Scholar
  108. S. Lee, C. Xiao, and S. Pei, “Ethnobotanical survey of medicinal plants at periodic markets of Honghe Prefecture in Yunnan Province, SW China,” Journal of Ethnopharmacology, vol. 117, no. 2, pp. 362–377, 2008. View at Publisher · View at Google Scholar · View at Scopus
  109. S. C. Chhabra, R. L. A. Mahunnah, and E. N. Mshiu, “Plants used in traditional medicine in Eastern Tanzania. II. Angiosperms (capparidaceae to ebenaceae),” Journal of Ethnopharmacology, vol. 25, no. 3, pp. 339–359, 1989. View at Google Scholar · View at Scopus
  110. L. S. Gill, Ethnomedicinal Uses of Plants in Nigeria, Uniben Press, Benin City, Nigeria, 1992.
  111. B. Akendengué and A. M. Louis, “Medicinal plants used by the Masango people in Gabon,” Journal of Ethnopharmacology, vol. 41, no. 3, pp. 193–200, 1994. View at Publisher · View at Google Scholar · View at Scopus
  112. J. W. Novy, “Medicinal plants of the eastern region of Madagascar,” Journal of Ethnopharmacology, vol. 55, no. 2, pp. 119–126, 1997. View at Publisher · View at Google Scholar · View at Scopus
  113. E. Noumi, F. Houngue, and D. Lontsi, “Traditional medicines in primary health care: plants used for the treatment of hypertension in Bafia, Cameroon,” Fitoterapia, vol. 70, no. 2, pp. 134–139, 1999. View at Publisher · View at Google Scholar · View at Scopus
  114. M. Raza and M. I. Chaudhary, “Medicinal plants with anticonvulsant activities,” Studies in Natural Products Chemistry, vol. 22, part C, pp. 507–553, 2000. View at Publisher · View at Google Scholar
  115. H. K. Hatil, “Medicinal plants in East and Central Africa: challenges and constraint,” Ethnobotanical Leaflets, vol. 13, pp. 364–369, 2009. View at Google Scholar
  116. P. B. Telefo, L. L. Lienou, M. D. Yemele et al., “Ethnopharmacological survey of plants used for the treatment of female infertility in Baham, Cameroon,” Journal of Ethnopharmacology, vol. 136, no. 1, pp. 178–187, 2011. View at Publisher · View at Google Scholar · View at Scopus
  117. J. G. Graham, M. L. Quinn, D. S. Fabricant, and N. R. Farnsworth, “Plants used against cancer—an extension of the work of Jonathan Hartwell,” Journal of Ethnopharmacology, vol. 73, no. 3, pp. 347–377, 2000. View at Publisher · View at Google Scholar · View at Scopus
  118. E. Noumi and A. Yomi, “Medicinal plants used for intestinal diseases in Mbalmayo Region, Central Province, Cameroon,” Fitoterapia, vol. 72, no. 3, pp. 246–254, 2001. View at Publisher · View at Google Scholar · View at Scopus
  119. R. C. Srivastava, R. K. Singh, and T. K. Mukherjee, “Indigenous biodiversity of Apatani plateau: Learning on biocultural knowledge of Apatani tribe of Arunachal Pradesh for sustainable livelihoods,” Indian Journal of Traditional Knowledge, vol. 9, no. 3, pp. 432–442, 2010. View at Google Scholar · View at Scopus
  120. X.-L. Zheng and F.-W. Xing, “Ethnobotanical study on medicinal plants around Mt.Yinggeling, Hainan Island, China,” Journal of Ethnopharmacology, vol. 124, no. 2, pp. 197–210, 2009. View at Publisher · View at Google Scholar · View at Scopus
  121. S. Tangjang, N. D. Namsa, C. Aran, and A. Litin, “An ethnobotanical survey of medicinal plants in the Eastern Himalayan zone of Arunachal Pradesh, India,” Journal of Ethnopharmacology, vol. 134, no. 1, pp. 18–25, 2011. View at Publisher · View at Google Scholar · View at Scopus
  122. K. Majumdar and B. K. Datta, “A study on ethnomedicinal usage of plants among the folklore herbalists and Tripuri medical practitioners: part-II,” Natural Product Radiance, vol. 6, no. 1, pp. 66–73, 2007. View at Google Scholar · View at Scopus
  123. A. R. Chowdhury, F. I. Jahan, S. Seraj et al., “A survey of medicinal plants used by Kavirajes of Barisal town in Barisal District, Bangladesh,” American-Eurasian Journal of Sustainable Agriculture, vol. 4, no. 2, pp. 237–246, 2010. View at Google Scholar · View at Scopus
  124. P. Tamuli and P. Sharma, “Ethno-medico-botany of the Dimasa Kachari of North Cachar hills district of Assam,” Indian Journal of Traditional Knowledge, vol. 9, no. 4, pp. 718–720, 2010. View at Google Scholar · View at Scopus
  125. M. Rahmatullah, A.-A. Abdullah-Al-Mahmud, M. A. Rahman et al., “An ethnomedicinal survey conducted amongst folk medicinal practitioners in the two southern districts of Noakhali and Feni, Bangladesh,” American-Eurasian Journal of Sustainable Agriculture, vol. 5, no. 1, pp. 115–131, 2011. View at Google Scholar · View at Scopus
  126. J. Friedman, J. D. Bolotin, M. Rios et al., “A novel method for identification and domestication of indigenous useful plants in Amazonian Ecuador,” in New Cropseds, J. Janick and J. E. Simon, Eds., pp. 167–174, Wiley, New York, NY, USA, 1993. View at Google Scholar
  127. D. J. Simbo, “An ethnobotanical survey of medicinal plants in Babungo, Northwest Region, Cameroon,” Journal of Ethnobiology and Ethnomedicine, vol. 6, article no. 8, 2010. View at Publisher · View at Google Scholar · View at Scopus
  128. A. C. Elisaldo, R. Eliana, R. M. Fulvio et al., “Treatment of drug dependence with Brazilian herbal medicines,” Brazilian Journal of Pharmacognsosy, vol. 16, pp. 690–695, 2006. View at Google Scholar
  129. T. Arnason, F. Uck, J. Lambert, and R. Hebda, “Maya medicinal plants of San Jose Succotz, Belize,” Journal of Ethnopharmacology, vol. 2, no. 4, pp. 345–364, 1980. View at Google Scholar · View at Scopus
  130. J. Molinatorres, R. Salgado-Garciglia, E. Ramirez-Chavez, and R. E. Del Rio, “Purely olefinic alkamides in Heliopsis longipes and acmella (Spilanthes) oppositifolia,” Biochemical Systematics and Ecology, vol. 24, no. 1, pp. 43–47, 1996. View at Google Scholar · View at Scopus
  131. D. K. Mukharya and A. H. Ansari, “Olean-12-en-3-O-beta-D-galactopyranosyl (14)-O-alpha-L-rhamnopyranoside: a new triterpenoidal saponin from the roots of Spilanthes acmella (Murr.),” Indian Journal of Chemistry, vol. 26, no. 4, pp. 86–87, 1987. View at Google Scholar
  132. J. P. Ley, M. Blings, G. Krammer, G. Reinders, C.-O. Schmidt, and H.-J. Bertram, “Isolation and synthesis of acmellonate, a new unsaturated long chain 2-ketol ester from Spilanthes acmella,” Natural Product Research, vol. 20, no. 9, pp. 798–804, 2006. View at Publisher · View at Google Scholar · View at Scopus
  133. P. C. Standley and S. Calderon, Lista Preliminar de las Plantas de El Savador, 1944.
  134. F. Bohlmann, J. Ziesche, H. Robinson, and R. M. King, “Neue amide aus Spilanthes alba,” Phytochemistry, vol. 19, no. 7, pp. 1535–1537, 1980. View at Google Scholar · View at Scopus
  135. G.-P. Li, B.-C. Shen, J.-F. Zhao, X.-D. Yang, and L. Li, “Two new alkamides from Spilanthes callimorpha,” Journal of Integrative Plant Biology, vol. 49, no. 11, pp. 1608–1610, 2007. View at Publisher · View at Google Scholar · View at Scopus
  136. S. P. Voravuthikunchai, S. Phongpaichit, and S. Subhadhirasakul, “Evaluation of antibacterial activities of medicinal plants widely used among AIDS patients in Thailand,” Pharmaceutical Biology, vol. 43, no. 8, pp. 701–706, 2005. View at Publisher · View at Google Scholar · View at Scopus
  137. T. Johns, K. Graham, and G. H. N. Towers, “Molluscicidal activity of affinin and other isobutylamides from the asteraceae,” Phytochemistry, vol. 21, no. 11, pp. 2737–2738, 1982. View at Google Scholar · View at Scopus
  138. P. Aranya, P. Nopadon, S. Wanwipa, and B. Anong, “Toxicity test of Kameng (Eclipta prostrata Linn.) and Kradhuawean (Spilanthes acmella (Linn.) Murr.) to early life stage of zebrafish (Danio rerio),” Thai Journal of Veterinary Medicine, vol. 4, pp. 523–527, 2011. View at Google Scholar
  139. M. M. Prasad and G. Seenayya, “Effect of spices on the growth of red halophilic cocci isolated from salt cured fish and solar salt,” Food Research International, vol. 33, no. 9, pp. 793–798, 2000. View at Publisher · View at Google Scholar · View at Scopus
  140. V. Pandey, V. Agrawal, K. Raghavendra, and A. P. Dash, “Strong larvicidal activity of three species of Spilanthes (Akarkara) against malaria (Anopheles stephensi Liston, Anopheles culicifacies, species C) and filaria vector (Culex quinquefasciatus Say),” Parasitology Research, vol. 102, no. 1, pp. 171–174, 2007. View at Publisher · View at Google Scholar · View at Scopus
  141. D. K. Saraf and V. K. Dixit, “Spilanthes acmella Murr.: study on its extract spilanthol as larvicidal compound,” Asian Journal of Experimental Sciences, vol. 16, no. 1-2, pp. 9–19, 2002. View at Google Scholar
  142. G. S. L. Gaston, A. M. Lic, A. Pilot et al., “Pharmacotoxicological study of the essential oil obtained from the flower of Spilanthes urens Jacq,” Anuario de Toxicología, vol. 1, pp. 120–125, 2001. View at Google Scholar
  143. R. D. Cardona, O. Zuluaga, and N. Ramirez, Acute Toxicity of Spilanthes americana in Swiss Albino Mice, 2003, http://iadr.confex.com/iadr/2006Brisb/preliminaryprogram/abstract_76207.htm.
  144. V. M. Moreira, J. G. Maia, J. M. de Souza, Z. A. Bortolotto, and E. A. Cavalheiro, “Characterization of convulsions induced by a hexanic extract of Spilanthes acmella var. oleracea in rats,” Brazilian Journal of Medical and Biological Research, vol. 22, no. 1, pp. 65–67, 1989. View at Google Scholar · View at Scopus
  145. D. Hooper, “FDA poisonous plant database USFDA #:F25534,” Druggists Bulletin, vol. 4, pp. 368–369, 1989. View at Google Scholar
  146. S. Shil and M. Dutta, “Indigenous knowledge on healthcare practices by the Reang tribe of Dhalai District of Tripura, North East India,” Ethnobotanical Leaflets, vol. 13, pp. 775–790, 2009. View at Google Scholar
  147. T. Hui, A. K. Dass, and K. Pallabi, “Plants used by the Miri hill tribe of Arunachel Pradesh in ethanofisheries,” Indian Journal of Traditional Knowledge, vol. 4, pp. 57–64, 2005. View at Google Scholar
  148. P. L. Jakob, K. Gerhard, L. Jan, R. Gerald, and J. B. Heinz, “Structure-activity relationships of trigeminal effects for artificial and naturally occurring alkamides related to spilanthol,” in Flavour Science: Recent Advances and Trends, W. L. P. Bredie and M. A. Petersen, Eds., Elsevier B.V., Amsterdam, The Netherlands, 2006. View at Google Scholar
  149. M. Y. Rios, A. B. Aguilar-Guadarrama, and M. D. C. Gutiérrez, “Analgesic activity of affinin, an alkamide from Heliopsis longipes (Compositae),” Journal of Ethnopharmacology, vol. 110, no. 2, pp. 364–367, 2007. View at Publisher · View at Google Scholar · View at Scopus
  150. C. Hall III, “echinacea as a functional food ingredient,” Advances in Food and Nutrition Research, vol. 47, pp. 113–173, 2003. View at Publisher · View at Google Scholar · View at Scopus
  151. S. L. Stinson, B. M. Craven, and N. B. Cech, “HPLC/ESI-MS method validated for the analysis of alkylamides in Spilanthes acmella,” in Proceedings of the 58th SE Regional Meeting (SERMACS '06), Augusta, GA, USA, 2006.
  152. J. Gertsch, “Immunomodulatory lipids in plants: Plant fatty acid amides and the human endocannabinoid system,” Planta Medica, vol. 74, no. 6, pp. 638–650, 2008. View at Publisher · View at Google Scholar · View at Scopus
  153. J. Gertsch, S. Raduner, and K.-H. Altmann, “New natural noncannabinoid ligands for cannabinoid type-2 (CB2) receptors,” Journal of Receptors and Signal Transduction, vol. 26, no. 5-6, pp. 709–730, 2006. View at Publisher · View at Google Scholar · View at Scopus
  154. E. Rogala, E. Skopińska-Rózewska, A. Wasiutyński, A. K. Siwicki, E. Sommer, and K. Pastewka, “Echinacea purpurea diminishes neovascular reaction induced in mice skin by human cancer cells and stimulates non-specific cellular immunity in humans,” Central-European Journal of Immunology, vol. 33, no. 3, pp. 127–130, 2008. View at Google Scholar · View at Scopus
  155. V. Goel, C. Chang, J. V. Slama et al., “Alkylamides of Echinacea purpurea stimulate alveolar macrophage function in normal rats,” International Immunopharmacology, vol. 2, no. 2-3, pp. 381–387, 2002. View at Publisher · View at Google Scholar · View at Scopus
  156. W. Karin, F. Reginald, D. Hartmut, B. Veronika, and B. Rudolf, “Solute and relative bioavailabilities of dodeca-2E,4E,8E,10E/Z-tetraenoic acid isobutylamides after intravenous and oral single doses in rats,” BMC Pharmacology, vol. 9, p. 36, 2009. View at Google Scholar
  157. S. Vimalanathan, L. Kang, V. T. Amiguet, J. Livesey, J. T. Arnason, and J. Hudson, “Echinacea purpurea aerial parts contain multiple antiviral compounds,” Pharmaceutical Biology, vol. 43, no. 9, pp. 740–745, 2005. View at Publisher · View at Google Scholar · View at Scopus
  158. K. B. Christensen, R. K. Petersen, S. Petersen, K. Kristiansen, and L. P. Christensen, “Activation of PPARγ by metabolites from the flowers of purple coneflower (Echinacea purpurea),” Journal of Natural Products, vol. 72, no. 5, pp. 933–937, 2009. View at Publisher · View at Google Scholar · View at Scopus
  159. L. Sun, K. A. Rezaei, F. Temelli, and B. Ooraikul, “Supercritical fluid extraction of alkylamides from Echinacea angustifolia,” Journal of Agricultural and Food Chemistry, vol. 50, no. 14, pp. 3947–3953, 2002. View at Publisher · View at Google Scholar · View at Scopus
  160. P. Jayaraj, R. Govindarajan, and R. Alex, Isolation of a Flavonoid and Its spectral Analysis from Spilanthes calva DC, Periyar Maniammi University Poster Presentation, University of Nebraska, Lincoln, Neb, USA, 2010.
  161. M. Alam, U. Azim, S. Rahman et al., “Evaluation of antimicrobial and cytotoxic properties of Leucas aspera and Spilanthes paniculata,” International Journal of Biosciences, vol. 50, no. 14, pp. 3947–3953, 2001. View at Google Scholar
  162. Y. J. Moon, X. Wang, and M. E. Morris, “Dietary flavonoids: Effects on xenobiotic and carcinogen metabolism,” Toxicology In Vitro, vol. 20, no. 2, pp. 187–210, 2006. View at Publisher · View at Google Scholar · View at Scopus
  163. J. H. Capdevila, J. R. Falck, and R. C. Harris, “Cytochrome P450 and arachidonic acid bioactivation: molecular and functional properties of the arachidonate monooxygenase,” Journal of Lipid Research, vol. 41, no. 2, pp. 163–181, 2000. View at Google Scholar · View at Scopus
  164. L. H. Yao, Y. M. Jiang, J. Shi et al., “Flavonoids in food and their health benefits,” Plant Foods for Human Nutrition, vol. 59, no. 3, pp. 113–122, 2004. View at Publisher · View at Google Scholar · View at Scopus
  165. W. Borgi, M.-C. Recio, J. L. Ríos, and N. Chouchane, “Anti-inflammatory and analgesic activities of flavonoid and saponin fractions from Zizyphus lotus (L.) Lam,” South African Journal of Botany, vol. 74, no. 2, pp. 320–324, 2008. View at Publisher · View at Google Scholar · View at Scopus
  166. V. O. Bamidele, O. O. Stephen, D. Kemi et al., “Analgesic, antiinflammatory and antipyretic activities from flavonoid fractions of Chromolaena odorata,” Journal of Medicinal Plants Research, vol. 9, no. 2, pp. 219–225, 2008. View at Google Scholar
  167. Y. Wu, F. Wang, Q. Zheng et al., “Hepatoprotective effect of total flavonoids from Laggera alata against carbon tetrachloride-induced injury in primary cultured neonatal rat hepatocytes and in rats with hepatic damage,” Journal of Biomedical Science, vol. 13, no. 4, pp. 569–578, 2006. View at Publisher · View at Google Scholar · View at Scopus
  168. T. P. T. Cushnie and A. J. Lamb, “Antimicrobial activity of flavonoids,” International Journal of Antimicrobial Agents, vol. 26, no. 5, pp. 343–356, 2005. View at Publisher · View at Google Scholar · View at Scopus
  169. B. Kerry, “Phytotherapy for recurrent kidney stones. Phytotherapy review and commentary,” Townsend Letter for Doctors and Patients, pp. 51–53, 2005. View at Google Scholar
  170. E. Yarnell, “Botanical medicines for the urinary tract,” World journal of urology, vol. 20, no. 5, pp. 285–293, 2002. View at Google Scholar · View at Scopus
  171. A. Kirakosyan, P. B. Kaufman, J. Boik et al., “Types of interactions of plant metabolites at target sites-synergistic modes of interactions,” in Recent Advances in Plant Biotechnology, P. B. Kaufman, Ed., pp. 213–230, I.K International, New Delhi, India, 2009. View at Google Scholar
  172. J. Gertsch, “Botanical drugs, synergy, and network pharmacology: Forth and back to intelligent mixtures,” Planta Medica, vol. 77, no. 11, pp. 1086–1098, 2011. View at Publisher · View at Google Scholar · View at Scopus
  173. E. M. Williamson, “Synergy and other interactions in phytomedicines,” Phytomedicine, vol. 8, no. 5, pp. 401–409, 2001. View at Google Scholar · View at Scopus