Table of Contents Author Guidelines Submit a Manuscript
Advances in Pharmacological Sciences
Volume 2014, Article ID 959830, 13 pages
http://dx.doi.org/10.1155/2014/959830
Review Article

Trapa bispinosa Roxb.: A Review on Nutritional and Pharmacological Aspects

1Department of Pharmacology, JSPM’s Jayawantrao Sawant College of Pharmacy and Research, Hadapsar, Pune,Maharashtra 411028, India
2Post Graduates Department of Pharmacology and Toxicology, JSPM’s Jayawantrao Sawant College of Pharmacy and Research, Handewadi Road, Hadapsar, Pune, Maharashtra 411028, India
3Department of Pharmaceutical Medicinal Chemistry, Gahlot Institute of Pharmacy Plot No. 59, Sector No. 14, Koparkhairane, Navi Mumbai, Maharashtra 400709, India

Received 17 August 2013; Accepted 20 November 2013; Published 10 February 2014

Academic Editor: Robert Gogal

Copyright © 2014 Prafulla Adkar et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. P. Rodrigues, C. Aggarwal, and N. K. Saha, “Canning of water chestnut (Singhara) (Trapa bispinosa Roxb.),” Journal of Food Science and Technology, vol. 1, pp. 28–31, 1964. View at Google Scholar
  2. Rodrigues, R. Agarwal PC, and N. K. Saha, “Canning of water chestnut (Trapa bispinosa) Roxb,” Journal of Food Science and Technology, vol. 1, pp. 28–31, 1964. View at Google Scholar
  3. R. Kirtikar and B. D. Basu, Indian Medicinal Plants, 2nd edition, 1993.
  4. G. Singh, S. Singh, N. Jindal et al., “Environment friendly antibacterial activity of water chestnut fruits,” Journal of Biodiversity and Environmental Sciences, vol. 1, no. 1, pp. 26–34, 2011. View at Google Scholar
  5. M. M. Rahman, M. I. Wahed, M. H. Biswas, G. M. Sadik, and M. E. Haque, “In vitro antibacterial activity of Trapa bispinosa Roxb,” Science, vol. 1, pp. 214–246, 2001. View at Google Scholar
  6. S. Bhatiwal, A. Jain, and J. Chaudhary, “Trapa natans (Water Chestnut): an overview,” International Research Journal of Pharmacy, vol. 3, no. 6, pp. 31–33, 2012. View at Google Scholar
  7. M. Chandana, R. Mazumder, and G. S. Chakraborthy, “A review on potential of plants under Trapa species,” International Journal of Research in Pharmacy and Chemistry, vol. 3, no. 2, pp. 502–508, 2013. View at Google Scholar
  8. N. Malviya, S. Jain, A. Jain, S. Jain, and R. Gurjar, “Evaluation of in vitro antioxidant potential of aqueous extract of Trapa natans L. fruits,” Acta Poloniae Pharmaceutica, vol. 67, no. 4, pp. 391–396, 2010. View at Google Scholar · View at Scopus
  9. U. K. Karmakar, K. S. Rahman, N. N. Biswas et al., “Antidiarrheal, analgesic and antioxidant activities of Trapa bispinosa Roxb. fruits,” Research Journal of Pharmacy and Technology, vol. 4, no. 2, pp. 111–115, 2011. View at Google Scholar · View at Scopus
  10. S. Patel, D. Banji, O. J. F. Banji, M. M. Patel, and K. K. Shah, “Scrutinizing the role of aqueous extract of Trapa bispinosa as an immunomodulator in experimental animals,” International Journal of Research in Pharmaceutical Sciences, vol. 1, no. 1, pp. 13–19, 2010. View at Google Scholar · View at Scopus
  11. K. Ishimaru, F. Kubota, K. Saitou, and M. Nakayama, “Photosynthetic response and carboxylation activity of enzymes in leaves and roots of water chestnut, Trapa bispinosa Roxb,” Journal of the Faculty of Agriculture, Kyushu University, vol. 41, no. 1-2, pp. 57–65, 1996. View at Google Scholar · View at Scopus
  12. C. P. Khare, Indian Medicinal Plants: An Illustrated Dictionary, Springer, Berlin, Germay, 2007.
  13. M. A. Alfasane, K. Moniruzzaman, and M. M. Rahman, “Biochemical composition of the fruits of water chestnut (Trapa bispinosa Roxb),” Dhaka University Journal of Biological Sciences, vol. 20, no. 1, pp. 95–98, 2011. View at Google Scholar
  14. M. M. Rahman, M. A. Mosaddik, M. I. I. Wahed, and M. E. Haque, “Antimicrobial activity and cytotoxicity of Trapa bispinosa,” Fitoterapia, vol. 71, no. 6, pp. 704–706, 2000. View at Publisher · View at Google Scholar · View at Scopus
  15. D. B. Ambikar, U. N. Harle, R. A. Khandare, V. V. Bore, and N. S. Vyawahare, “Neuroprotective effect of hydroalcoholic extract of dried fruits of Trapa bispinosa roxb on lipofuscinogenesis and fluorescence product in brain of d-galactose induced ageing accelerated mice,” Indian Journal of Experimental Biology, vol. 48, no. 4, pp. 378–382, 2010. View at Google Scholar · View at Scopus
  16. D. Kar, L. Maharana, S. C. Si, M. K. Kar, and D. Sasmal, “Anti-ulcer activity of ethanolic extract of fruit of Trapa bispinosa Roxb. in animals,” Der Pharmacia Lettre, vol. 2, no. 2, pp. 190–197, 2010. View at Google Scholar
  17. A. K. Agrahari, M. Khaliquzzama, and S. K. Panda, “Evaluation of analgesic activity of methanolic extract of Trapa natans l.var. Bispinosa roxb. Roots,” Journal of Current Pharmaceutical Research, vol. 1, pp. 8–11, 2010. View at Google Scholar
  18. M. M. Rahman, M. A. Mosaddik, M. I. I. Wahed, and M. E. Haque, “Antimicrobial activity and cytotoxicity of Trapa bispinosa,” Fitoterapia, vol. 71, no. 6, pp. 704–706, 2000. View at Publisher · View at Google Scholar · View at Scopus
  19. N. S. Vyawahare and D. B. Ambikar, “Evaluation of neuropharmacological activity of hydroalcoholic extract of fruits of Trapa bispinosa in laboratory animals,” International Journal of Pharmacy and Pharmaceutical Sciences, vol. 2, no. 2, pp. 32–35, 2010. View at Google Scholar · View at Scopus
  20. M. A. Razvy, O. F. Mohammad, and A. Mohammad Hoque, “Environment friendly antibacterial activity of water chestnut fruits,” Journal of Biodiversity and Environmental Sciences, vol. 1, no. 1, pp. 26–34, 2011. View at Google Scholar
  21. S. M. Mandal, L. Migliolo, O. L. Franco, and A. K. Ghosh, “Identification of an antifungal peptide from Trapa natans fruits with inhibitory effects on Candida tropicalis biofilm formation,” Peptides, vol. 32, no. 8, pp. 1741–1747, 2011. View at Publisher · View at Google Scholar · View at Scopus
  22. J. Mei, Y. Yuan, Q. Guo, Y. Wu, Y. Li, and H. Yu, “Characterization and antimicrobial properties of water chestnut starch-chitosan edible films,” International Journal of Biological Macromolecules, vol. 61, pp. 169–174, 2013. View at Google Scholar
  23. R. Nawale and S. Poojari, “Review on chemical constituents and parts of plants as immunomodulator,” Research Journal of Pharmaceutical, Biological and Chemical Sciences, vol. 4, no. 1, pp. 76–89, 2012. View at Google Scholar
  24. S. Mann, D. Gupta, V. Gupta, and R. K. Gupta, “Evaluation of nutritional, phytochemical and antioxidant potential of Trapa bispinosa roxb. Fruits,” International Journal of Pharmacy and Pharmaceutical Sciences, vol. 4, no. 1, pp. 432–436, 2012. View at Google Scholar · View at Scopus
  25. S. Pandey, A. Mewada, M. Thakur et al., “Rapid biosynthesis of silver nanoparticles by exploiting the reducing potential of Trapa bispinosa peel extract,” Journal of Nanoscience, vol. 2013, Article ID 516357, 9 pages, 2013. View at Publisher · View at Google Scholar
  26. A. H. Malik, M. Faqir, S. Ayesh, I. Muhammad, and S. Muhammad, “Extraction of starch from Water Chestnut (Trapa bispinosa Roxb) and its application in yogurt as a stabilizer,” Pakistan Journal of Food Sciences, vol. 22, no. 4, pp. 209–218, 2012. View at Google Scholar
  27. Z. Lutfi and A. Hasnain, “Effect of different hydrocolloids on pasting behavior of native water chestnut (Trapa bispinosa) starch,” Agriculturae Conspectus Scientificus, vol. 74, no. 2, pp. 111–114, 2009. View at Google Scholar · View at Scopus
  28. C. Majee, R. Mazumder, and G. Chakraborthy, “A Review on potential of plants under Trapa Species,” International Journal for Radiation Physics and Chemistry, vol. 3, no. 2, pp. 502–508, 2013. View at Google Scholar
  29. M. C. Song, D. Y. Lee, E. M. Ahn et al., “Triterpenoids from Trapa pseudoincisa,” Journal of Applied Biological Chemistry, vol. 50, no. 4, pp. 259–263, 2007. View at Google Scholar
  30. A. Chatterjee and S. Prakash, The Treatise on Indian Medicinal Plants, vol. 4, NISCAIR, New Delhi, India, 1995.
  31. K. M. Nadkarni, Indian Materia Medica, vol. 1, Popular Prakashan, Mumbai, India, 2nd edition, 2007.
  32. A. Ghani, S. S. Haq, F. A. Masoodi, A. A. Broadway, and A. Gani, “Physico-chemical, Morphological and pasting properties of starches extracted from water chestnuts (Trapa natans) from three lakes of Kashmir, India,” Brazilian Archives of Biology and Technology, vol. 53, no. 3, pp. 731–740, 2010. View at Publisher · View at Google Scholar · View at Scopus
  33. M. O. Faruk, M. Z. Amin, N. K. Sana, R. K. Shaha, and K. K. Biswas, “Biochemical analysis of two varieties of water chestnuts (Trapa sp.),” Pakistan Journal of Biological Sciences, vol. 15, no. 21, pp. 1019–1026, 2012. View at Google Scholar
  34. P. K. Das, S. Bhattacharya, J. N. Pandey, and M. Biswas, “Antidiabetic activity of Trapa natans fruit peel extract against streptozotocin induced diabetic rats,” Global Journal of Pharmacology, vol. 5, no. 3, pp. 186–190, 2010. View at Google Scholar
  35. A. V. Singh, A. Singh, L. K. Nath, and N. R. Pani, “Evaluation of Trapa bispinosa Roxb. starch as pharmaceutical binder in solid dosage form,” Asian Pacific Journal of Tropical Biomedicine, vol. 1, no. 1, pp. S86–S89, 2011. View at Publisher · View at Google Scholar · View at Scopus
  36. V. Tulyathan, K. Boondee, and T. Mahawanich, “Characteristics of starch from water chestnut (Trapa bispinosa Roxb.),” Journal of Food Biochemistry, vol. 29, no. 4, pp. 337–348, 2005. View at Publisher · View at Google Scholar · View at Scopus
  37. C. Kim, H. R. Na, and H.-K. Choi, “Molecular genotyping of Trapa bispinosa and T. japonica (Trapaceae) based on nuclear AP2 and chloroplast DNA trnL-F region,” American Journal of Botany, vol. 97, no. 12, pp. e149–e152, 2010. View at Publisher · View at Google Scholar · View at Scopus
  38. L. T. Phuong, L. Jin-Sil, and P. Kwan-Hwa, “Molecular structure and rheological character of high-amylose water caltrop (Trapa bispinosa Roxb.) starch,” Food Science and Biotechnology, vol. 22, no. 4, pp. 979–985, 2013. View at Google Scholar