Table of Contents
Advances in Psychiatry
Volume 2014 (2014), Article ID 859735, 16 pages
http://dx.doi.org/10.1155/2014/859735
Review Article

D-Serine in Neuropsychiatric Disorders: New Advances

1Research and Psychiatry Departments, Ezrath Nashim-Herzog Memorial Hospital, P.O. Box 3900, 91035 Jerusalem, Israel
2Hadassah Medical School, Hebrew University, Jerusalem, Israel

Received 2 February 2014; Accepted 17 April 2014; Published 19 June 2014

Academic Editor: Raphael J. Braga

Copyright © 2014 Andrea R. Durrant and Uriel Heresco-Levy. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. H. A. Krebs, “Metabolism of amino-acids: deamination of amino-acids,” Biochemical Journal, vol. 29, no. 7, pp. 1620–1644, 1935. View at Google Scholar
  2. A. Hashimoto, T. Nishikawa, T. Hayashi et al., “The presence of free D-serine in rat brain,” FEBS Letters, vol. 296, no. 1, pp. 33–36, 1992. View at Publisher · View at Google Scholar · View at Scopus
  3. A. Hashimoto, T. Nishikawa, T. Oka, and K. Takahashi, “Endogenous D-serine in rat brain: N-methyl-D-aspartate receptor-related distribution and aging,” Journal of Neurochemistry, vol. 60, no. 2, pp. 783–786, 1993. View at Publisher · View at Google Scholar · View at Scopus
  4. J. P. Crow, J. C. Marecki, and M. Thompson, “D-Serine production, degradation, and transport in ALS: critical role of methodology,” Neurology Research International, vol. 2012, Article ID 625245, 8 pages, 2012. View at Publisher · View at Google Scholar
  5. Y. Nagata, K. Horiike, and T. Maeda, “Distribution of free D-serine in vertebrate brains,” Brain Research, vol. 634, no. 2, pp. 291–295, 1994. View at Publisher · View at Google Scholar · View at Scopus
  6. N. Rebola, B. N. Srikumar, and C. Mulle, “Activity-dependent synaptic plasticity of NMDA receptors,” Journal of Physiology, vol. 588, no. 1, pp. 93–99, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. R. C. Malenka and M. F. Bear, “LTP and LTD: an embarrassment of riches,” Neuron, vol. 44, no. 1, pp. 5–21, 2004. View at Publisher · View at Google Scholar · View at Scopus
  8. P. Paoletti and J. Neyton, “NMDA receptor subunits: function and pharmacology,” Current Opinion in Pharmacology, vol. 7, no. 1, pp. 39–47, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. J. W. Johnson and P. Ascher, “Glycine potentiates the NMDA response in cultured mouse brain neurons,” Nature, vol. 325, no. 6104, pp. 529–531, 1987. View at Google Scholar · View at Scopus
  10. A. Hashimoto and T. Oka, “Free D-aspartate and D-serine in the mammalian brain and periphery,” Progress in Neurobiology, vol. 52, no. 4, pp. 325–353, 1997. View at Publisher · View at Google Scholar · View at Scopus
  11. L. Pollegioni and S. Sacchi, “Metabolism of the neuromodulator D-serine,” Cellular and Molecular Life Sciences, vol. 67, no. 14, pp. 2387–2404, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. M. Martineau, G. Baux, and J.-P. Mothet, “D-Serine signalling in the brain: friend and foe,” Trends in Neurosciences, vol. 29, no. 8, pp. 481–491, 2006. View at Publisher · View at Google Scholar · View at Scopus
  13. H. Wolosker, “NMDA receptor regulation by D-serine: new findings and perspectives,” Molecular Neurobiology, vol. 36, no. 2, pp. 152–164, 2007. View at Publisher · View at Google Scholar · View at Scopus
  14. J.-P. Mothet and S. H. Snyder, “Brain D-amino acids: a novel class of neuromodulators,” Amino Acids, vol. 43, no. 5, pp. 1809–1810, 2012. View at Publisher · View at Google Scholar · View at Scopus
  15. Y. Yang, W. Ge, Y. Chen et al., “Contribution of astrocytes to hippocampal long-term potentiation through release of D-serine,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 25, pp. 15194–15199, 2003. View at Publisher · View at Google Scholar · View at Scopus
  16. A. C. Basu, G. E. Tsai, C.-L. Ma et al., “Targeted disruption of serine racemase affects glutamatergic neurotransmission and behavior,” Molecular Psychiatry, vol. 14, no. 7, pp. 719–727, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. Z. Zhang, N. Gong, W. Wang, L. Xu, and T.-L. Xu, “Bell-shaped d-serine actions on hippocampal long-term depression and spatial memory retrieval,” Cerebral Cortex, vol. 18, no. 10, pp. 2391–2401, 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. J. P. Mothet, E. Rouaud, P.-M. Sinet et al., “A critical role for the glial-derived neuromodulator D-serine in the age-related deficits of cellular mechanisms of learning and memory,” Aging Cell, vol. 5, no. 3, pp. 267–274, 2006. View at Publisher · View at Google Scholar · View at Scopus
  19. A. Panatier, D. T. Theodosis, J.-P. Mothet et al., “Glia-derived D-serine controls NMDA receptor activity and synaptic memory,” Cell, vol. 125, no. 4, pp. 775–784, 2006. View at Publisher · View at Google Scholar · View at Scopus
  20. E. R. Stevens, M. Esguerra, P. M. Kim et al., “D-serine and serine racemase are present in the vertebrate retina and contribute to the physiological activation of NMDA receptors,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 11, pp. 6789–6794, 2003. View at Publisher · View at Google Scholar · View at Scopus
  21. T. L. Kalbaugh, J. Zhang, and J. S. Diamond, “Coagonist release modulates NMDA receptor subtype contributions at synaptic inputs to retinal ganglion cells,” The Journal of Neuroscience, vol. 29, no. 5, pp. 1469–1479, 2009. View at Publisher · View at Google Scholar · View at Scopus
  22. J.-P. Mothet, A. T. Parent, H. Wolosker et al., “D-serine is an endogenous ligand for the glycine site of the N-methyl-D-aspartate receptor,” Proceedings of the National Academy of Sciences of the United States of America, vol. 97, no. 9, pp. 4926–4931, 2000. View at Google Scholar · View at Scopus
  23. E. Kartvelishvily, M. Shleper, L. Balan, E. Dumin, and H. Wolosker, “Neuron-derived D-serine release provides a novel means to activate N-methyl-D-aspartate receptors,” The Journal of Biological Chemistry, vol. 281, no. 20, pp. 14151–14162, 2006. View at Publisher · View at Google Scholar · View at Scopus
  24. M. Shleper, E. Kartvelishvily, and H. Wolosker, “D-serine is the dominant endogenous coagonist for NMDA receptor neurotoxicity in organotypic hippocampal slices,” The Journal of Neuroscience, vol. 25, no. 41, pp. 9413–9417, 2005. View at Publisher · View at Google Scholar · View at Scopus
  25. P. M. Kim, H. Aizawa, P. S. Kim et al., “Serine racemase: activation by glutamate neurotransmission via glutamate receptor interacting protein and mediation of neuronal migration,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 6, pp. 2105–2110, 2005. View at Publisher · View at Google Scholar · View at Scopus
  26. S. A. Lipton and P. A. Rosenberg, “Mechanisms of disease: excitatory amino acids as a final common pathway for neurologic disorders,” The New England Journal of Medicine, vol. 330, no. 9, pp. 613–622, 1994. View at Publisher · View at Google Scholar · View at Scopus
  27. D. W. Choi, “Excitotoxic cell death,” Journal of Neurobiology, vol. 23, no. 9, pp. 1261–1276, 1992. View at Publisher · View at Google Scholar · View at Scopus
  28. J. A. Kemp and R. M. McKernan, “NMDA receptor pathways as drug targets,” Nature Neuroscience, vol. 5, pp. 1039–1042, 2002. View at Publisher · View at Google Scholar · View at Scopus
  29. G. E. Hardingham and H. Bading, “The Yin and Yang of NMDA receptor signalling,” Trends in Neurosciences, vol. 26, no. 2, pp. 81–89, 2003. View at Publisher · View at Google Scholar · View at Scopus
  30. C. Ikonomidou, F. Bosch, M. Miksa et al., “Blockade of NMDA receptors and apoptotic neurodegeneration in the developing brain,” Science, vol. 283, no. 5398, pp. 70–74, 1999. View at Publisher · View at Google Scholar · View at Scopus
  31. B. K. Fiske and P. C. Brunjes, “NMDA receptor regulation of cell death in the rat olfactory bulb,” Journal of Neurobiology, vol. 47, no. 3, pp. 223–232, 2001. View at Publisher · View at Google Scholar · View at Scopus
  32. G. E. Hardingham and H. Bading, “Synaptic versus extrasynaptic NMDA receptor signalling: implications for neurodegenerative disorders,” Nature Reviews Neuroscience, vol. 11, no. 10, pp. 682–696, 2010. View at Publisher · View at Google Scholar · View at Scopus
  33. M. J. Schell, M. E. Molliver, and S. H. Snyder, “D-serine, an endogenous synaptic modulator: localization to astrocytes and glutamate-stimulated release,” Proceedings of the National Academy of Sciences of the United States of America, vol. 92, no. 9, pp. 3948–3952, 1995. View at Google Scholar · View at Scopus
  34. H. Wolosker, “Serine racemase and the serine shuttle between neurons and astrocytes,” Biochimica et Biophysica Acta—Proteins and Proteomics, vol. 1814, no. 11, pp. 1558–1566, 2011. View at Publisher · View at Google Scholar · View at Scopus
  35. J.-P. Mothet, L. Pollegioni, G. Ouanounou, M. Martineau, P. Fossier, and G. Baux, “Glutamate receptor activation triggers a calcium-dependent and SNARE protein-dependent release of the gliotransmitter D-serine,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 15, pp. 5606–5611, 2005. View at Publisher · View at Google Scholar · View at Scopus
  36. E. Yasuda, N. Ma, and R. Semba, “Immunohistochemical evidences for localization and production of D-serine in some neurons in the rat brain,” Neuroscience Letters, vol. 299, no. 1-2, pp. 162–164, 2001. View at Publisher · View at Google Scholar · View at Scopus
  37. S. M. Williams, C. M. Diaz, L. T. Macnab, R. K. P. Sullivan, and D. V. Pow, “Immunocytochemical analysis of D-serine distribution in the mammalian brain reveals novel anatomical compartmentalizations in glia and neurons,” GLIA, vol. 53, no. 4, pp. 401–411, 2006. View at Publisher · View at Google Scholar · View at Scopus
  38. J. Puyal, M. Martineau, J.-P. Mothet, M.-T. Nicolas, and J. Raymond, “Changes in D-serine levels and localization during postnatal development of the rat vestibular nuclei,” Journal of Comparative Neurology, vol. 497, no. 4, pp. 610–621, 2006. View at Publisher · View at Google Scholar · View at Scopus
  39. D. T. Balu and J. T. Coyle, “Neuronal d-serine regulates dendritic architecture in the somatosensory cortex,” Neuroscience Letters, vol. 517, no. 2, pp. 77–81, 2012. View at Publisher · View at Google Scholar · View at Scopus
  40. M. A. Benneyworth, Y. Li, A. C. Basu, V. Y. Bolshakov, and J. T. Coyle, “Cell selective conditional null mutations of serine racemase demonstrate a predominate localization in cortical glutamatergic neurons,” Cellular and Molecular Neurobiology, vol. 32, no. 4, pp. 613–624, 2012. View at Publisher · View at Google Scholar · View at Scopus
  41. K. Miya, R. Inoue, Y. Takata et al., “Serine racemase is predominantly localized in neurons in mouse brain,” Journal of Comparative Neurology, vol. 510, no. 6, pp. 641–654, 2008. View at Publisher · View at Google Scholar · View at Scopus
  42. D. Rosenberg, E. Kartvelishvily, M. Shleper, C. M. C. Klinker, M. T. Bowser, and H. Wolosker, “Neuronal release of D-serine: a physiological pathway controlling extracellular D-serine concentration,” The FASEB Journal, vol. 24, no. 8, pp. 2951–2961, 2010. View at Publisher · View at Google Scholar · View at Scopus
  43. D. Rosenberg, S. Artoul, A. C. Segal et al., “Neuronal D-serine and glycine release via the Asc-1 transporter regulates NMDA receptor-dependent synaptic activity,” The Journal of Neuroscience, vol. 33, no. 8, pp. 3533–3544, 2013. View at Publisher · View at Google Scholar · View at Scopus
  44. H. Wolosker, “D-serine regulation of NMDA receptor activity,” Science's STKE: Signal Transduction Knowledge Environment, vol. 2006, no. 356, p. pe41, 2006. View at Publisher · View at Google Scholar · View at Scopus
  45. N. Kishi and J. D. Macklis, “MECP2 is progressively expressed in post-migratory neurons and is involved in neuronal maturation rather than cell fate decisions,” Molecular and Cellular Neuroscience, vol. 27, no. 3, pp. 306–321, 2004. View at Publisher · View at Google Scholar · View at Scopus
  46. M. J. Schell, R. O. Brady Jr., M. E. Molliver, and S. H. Snyder, “D-serine as a neuromodulator: regional and developmental localizations in rat brain glia resemble NMDA receptors,” The Journal of Neuroscience, vol. 17, no. 5, pp. 1604–1615, 1997. View at Google Scholar · View at Scopus
  47. T. Papouin, L. Ladépêche, J. Ruel et al., “Synaptic and extrasynaptic NMDA receptors are gated by different endogenous coagonists,” Cell, vol. 150, no. 3, pp. 633–646, 2012. View at Publisher · View at Google Scholar · View at Scopus
  48. P. Fossat, F. R. Turpin, S. Sacchi et al., “Glial D-serine gates NMDA receptors at excitatory synapses in prefrontal cortex,” Cerebral Cortex, vol. 22, no. 3, pp. 595–606, 2012. View at Publisher · View at Google Scholar · View at Scopus
  49. C. Henneberger, T. Papouin, S. H. R. Oliet, and D. A. Rusakov, “Long-term potentiation depends on release of d-serine from astrocytes,” Nature, vol. 463, no. 7278, pp. 232–236, 2010. View at Publisher · View at Google Scholar · View at Scopus
  50. L. Liu, T. P. Wong, M. F. Pozza et al., “Role of NMDA receptor subtypes in governing the direction of hippocampal synaptic plasticity,” Science, vol. 304, no. 5673, pp. 1021–1024, 2004. View at Publisher · View at Google Scholar · View at Scopus
  51. P. V. Massey, B. E. Johnson, P. R. Moult et al., “Differential roles of NR2A and NR2B-containing NMDA receptors in cortical long-term potentiation and long-term depression,” The Journal of Neuroscience, vol. 24, no. 36, pp. 7821–7828, 2004. View at Publisher · View at Google Scholar · View at Scopus
  52. W. Morishita, W. Lu, G. B. Smith, R. A. Nicoll, M. F. Bear, and R. C. Malenka, “Activation of NR2B-containing NMDA receptors is not required for NMDA receptor-dependent long-term depression,” Neuropharmacology, vol. 52, no. 1, pp. 71–76, 2007. View at Publisher · View at Google Scholar · View at Scopus
  53. S. Berberich, P. Punnakkal, V. Jensen et al., “Lack of NMDA receptor subtype selectivity for hippocampal long-term potentiation,” The Journal of Neuroscience, vol. 25, no. 29, pp. 6907–6910, 2005. View at Publisher · View at Google Scholar · View at Scopus
  54. C. Weitlauf, Y. Honse, Y. P. Auberson, M. Mishina, D. M. Lovinger, and D. G. Winder, “Activation of NR2A-containing NMDA receptors is not obligatory for NMDA receptor-dependent long-term potentiation,” The Journal of Neuroscience, vol. 25, no. 37, pp. 8386–8390, 2005. View at Publisher · View at Google Scholar · View at Scopus
  55. D. A. Rusakov, A. Scimemi, M. C. Walker, and D. M. Kullmann, “Comment on “Role of NMDA receptor subtypes in governing the direction of hippocampal synaptic plasticity”,” Science, vol. 305, no. 5692, p. 1912, 2004. View at Google Scholar · View at Scopus
  56. T. Fellin, O. Pascual, S. Gobbo, T. Pozzan, P. G. Haydon, and G. Carmignoto, “Neuronal synchrony mediated by astrocytic glutamate through activation of extrasynaptic NMDA receptors,” Neuron, vol. 43, no. 5, pp. 729–743, 2004. View at Publisher · View at Google Scholar · View at Scopus
  57. M. C. Angulo, A. S. Kozlov, S. Charpak, and E. Audinat, “Glutamate released from glial cells synchronizes neuronal activity in the hippocampus,” The Journal of Neuroscience, vol. 24, no. 31, pp. 6920–6927, 2004. View at Publisher · View at Google Scholar · View at Scopus
  58. M. Arundine and M. Tymianski, “Molecular mechanisms of calcium-dependent neurodegeneration in excitotoxicity,” Cell Calcium, vol. 34, no. 4-5, pp. 325–337, 2003. View at Publisher · View at Google Scholar · View at Scopus
  59. A. J. Milnerwood, C. M. Gladding, M. A. Pouladi et al., “Early increase in extrasynaptic NMDA receptor signaling and expression contributes to phenotype onset in Huntington's disease mice,” Neuron, vol. 65, no. 2, pp. 178–190, 2010. View at Publisher · View at Google Scholar · View at Scopus
  60. K. Bordji, J. Becerril-Ortega, O. Nicole, and A. Buisson, “Activation of extrasynaptic, but not synaptic, NMDA receptors modifies amyloid precursor protein expression pattern and increases amyloid-β production,” The Journal of Neuroscience, vol. 30, no. 47, pp. 15927–15942, 2010. View at Publisher · View at Google Scholar · View at Scopus
  61. U. Heresco-Levy, D. C. Javitt, M. Ermilov, C. Mordel, G. Silipo, and M. Lichtenstein, “Efficacy of high-dose glycine in the treatment of enduring negative symptoms of schizophrenia,” Archives of General Psychiatry, vol. 56, no. 1, pp. 29–36, 1999. View at Publisher · View at Google Scholar · View at Scopus
  62. U. Heresco-Levy, D. C. Javitt, R. Ebstein et al., “D-serine efficacy as add-on pharmacotherapy to risperidone and olanzapine for treatment-refractory schizophrenia,” Biological Psychiatry, vol. 57, no. 6, pp. 577–585, 2005. View at Publisher · View at Google Scholar · View at Scopus
  63. U. Heresco-Levy, S. Shoham, and D. C. Javitt, “Glycine site agonists of the N-methyl-d-aspartate receptor and Parkinson's disease: a hypothesis,” Movement Disorders, vol. 28, no. 4, pp. 419–424, 2013. View at Publisher · View at Google Scholar · View at Scopus
  64. U. Heresco-Levy, M. Ermilov, P. Lichtenberg, G. Bar, and D. C. Javitt, “High-dose glycine added to olanzapine and risperidone for the treatment of schizophrenia,” Biological Psychiatry, vol. 55, no. 2, pp. 165–171, 2004. View at Publisher · View at Google Scholar · View at Scopus
  65. J. T. Kantrowitz, A. K. Malhotra, B. Cornblatt et al., “High dose D-serine in the treatment of schizophrenia,” Schizophrenia Research, vol. 121, no. 1–3, pp. 125–130, 2010. View at Publisher · View at Google Scholar · View at Scopus
  66. D. C. Javitt, S. R. Zukin, U. Heresco-Levy, and D. Umbricht, “Has an angel shown the way? Etiological and therapeutic implications of the PCP/NMDA model of schizophrenia,” Schizophrenia Bulletin, vol. 38, no. 5, pp. 958–966, 2012. View at Publisher · View at Google Scholar · View at Scopus
  67. E. Gelfin, Y. Kaufman, I. Korn-Lubetzki et al., “D-serine adjuvant treatment alleviates behavioural and motor symptoms in Parkinson's disease,” International Journal of Neuropsychopharmacology, vol. 15, no. 4, pp. 543–549, 2012. View at Publisher · View at Google Scholar · View at Scopus
  68. J. T. Coyle and P. Puttfarcken, “Oxidative stress, glutamate, and neurodegenerative disorders,” Science, vol. 262, no. 5134, pp. 689–695, 1993. View at Google Scholar · View at Scopus
  69. S. M. Dravid, P. B. Burger, A. Prakash et al., “Structural determinants of D-cycloserine efficacy at the NR1/NR2C NMDA receptors,” The Journal of Neuroscience, vol. 30, no. 7, pp. 2741–2754, 2010. View at Publisher · View at Google Scholar · View at Scopus
  70. T.-A. Matsui, M. Sekiguchi, A. Hashimoto, U. Tomita, T. Nishikawa, and K. Wada, “Functional comparison of D-serine and glycine in rodents: the effect on cloned NMDA receptors and the extracellular concentration,” Journal of Neurochemistry, vol. 65, no. 1, pp. 454–458, 1995. View at Google Scholar · View at Scopus
  71. U. Heresco-Levy, “Glutamatergic neurotransmission modulators as emerging new drugs for schizophrenia,” Expert Opinion on Emerging Drugs, vol. 10, no. 4, pp. 827–844, 2005. View at Publisher · View at Google Scholar · View at Scopus
  72. C. A. Ross, R. L. Margolis, S. A. J. Reading, M. Pletnikov, and J. T. Coyle, “Neurobiology of Schizophrenia,” Neuron, vol. 52, no. 1, pp. 139–153, 2006. View at Publisher · View at Google Scholar · View at Scopus
  73. L. Verrall, M. Walker, N. Rawlings et al., “D-Amino acid oxidase and serine racemase in human brain: normal distribution and altered expression in schizophrenia,” European Journal of Neuroscience, vol. 26, no. 6, pp. 1657–1669, 2007. View at Publisher · View at Google Scholar · View at Scopus
  74. V. Labrie, R. Fukumura, A. Rastogi et al., “Serine racemase is associated with schizophrenia susceptibility in humans and in a mouse model,” Human Molecular Genetics, vol. 18, no. 17, pp. 3227–3243, 2009. View at Publisher · View at Google Scholar · View at Scopus
  75. S. Sacchi, M. Bernasconi, M. Martineau et al., “pLG72 modulates intracellular D-serine levels through its interaction with D-amino acid oxidase: effect on schizophrenia susceptibility,” The Journal of Biological Chemistry, vol. 283, no. 32, pp. 22244–22256, 2008. View at Publisher · View at Google Scholar · View at Scopus
  76. J. Schumacher, R. Abon Jamra, J. Freudenberg et al., “Examination of G72 and D-amino-acid oxidase as genetic risk factors for schizophrenia and bipolar affective disorder,” Molecular Psychiatry, vol. 9, no. 2, pp. 203–207, 2004. View at Publisher · View at Google Scholar · View at Scopus
  77. S. D. Detera-Wadleigh and F. J. McMahon, “G72/G30 in Schizophrenia and bipolar disorder: review and meta-analysis,” Biological Psychiatry, vol. 60, no. 2, pp. 106–114, 2006. View at Publisher · View at Google Scholar · View at Scopus
  78. A. M. Addington, M. Gornick, A. L. Sporn et al., “Polymorphisms in the 13q33.2 gene G72/G30 are associated with childhood-onset schizophrenia and psychosis not otherwise specified,” Biological Psychiatry, vol. 55, no. 10, pp. 976–980, 2004. View at Publisher · View at Google Scholar · View at Scopus
  79. S. L. Almond, R. L. Fradley, E. J. Armstrong et al., “Behavioral and biochemical characterization of a mutant mouse strain lacking d-amino acid oxidase activity and its implications for schizophrenia,” Molecular and Cellular Neuroscience, vol. 32, no. 4, pp. 324–334, 2006. View at Publisher · View at Google Scholar · View at Scopus
  80. V. Labrie, W. Wang, S. W. Barger, G. B. Baker, and J. C. Roder, “Genetic loss of D-amino acid oxidase activity reverses schizophrenia-like phenotypes in mice,” Genes, Brain and Behavior, vol. 9, no. 1, pp. 11–25, 2010. View at Publisher · View at Google Scholar · View at Scopus
  81. K. Hashimoto, T. Fukushima, E. Shimizu et al., “Decreased serum levels of D-serine in patients with schizophrenia: evidence in support of the N-methyl-D-aspartate receptor hypofunction hypothesis of schizophrenia,” Archives of General Psychiatry, vol. 60, no. 6, pp. 572–576, 2003. View at Publisher · View at Google Scholar · View at Scopus
  82. K. Hashimoto, G. Engberg, E. Shimizu, C. Nordin, L. H. Lindström, and M. Iyo, “Reduced D-serine to total serine ratio in the cerebrospinal fluid of drug naive schizophrenic patients,” Progress in Neuro-Psychopharmacology and Biological Psychiatry, vol. 29, no. 5, pp. 767–769, 2005. View at Publisher · View at Google Scholar · View at Scopus
  83. M. A. Calcia, C. Madeira, F. V. Alheira et al., “Plasma levels of D-serine in Brazilian individuals with schizophrenia,” Schizophrenia Research, vol. 142, no. 1–3, pp. 83–87, 2012. View at Publisher · View at Google Scholar · View at Scopus
  84. K. Yamada, T. Ohnishi, K. Hashimoto et al., “Identification of multiple serine racemase (SRR) mRNA isoforms and genetic analyses of SRR and DAO in schizophrenia and D-serine levels,” Biological Psychiatry, vol. 57, no. 12, pp. 1493–1503, 2005. View at Publisher · View at Google Scholar · View at Scopus
  85. I. Bendikov, C. Nadri, S. Amar et al., “A CSF and postmortem brain study of d-serine metabolic parameters in schizophrenia,” Schizophrenia Research, vol. 90, no. 1–3, pp. 41–51, 2007. View at Publisher · View at Google Scholar · View at Scopus
  86. Y. Tanii, T. Nishikawa, A. Hashimoto, and K. Takahashi, “Stereoselective antagonism by enantiomers of alanine and serine of phencyclidine-induced hyperactivity, stereotypy and ataxia in the rat,” Journal of Pharmacology and Experimental Therapeutics, vol. 269, no. 3, pp. 1040–1048, 1994. View at Google Scholar · View at Scopus
  87. P. C. Contreras, “D-serine antagonized phencyclidine- and MK-801-induced stereotyped behavior and ataxia,” Neuropharmacology, vol. 29, no. 3, pp. 291–293, 1990. View at Publisher · View at Google Scholar · View at Scopus
  88. G. Tsai, P. Yang, L.-C. Chung, N. Lange, and J. T. Coyle, “D-serine added to antipsychotics for the treatment of schizophrenia,” Biological Psychiatry, vol. 44, no. 11, pp. 1081–1089, 1998. View at Publisher · View at Google Scholar · View at Scopus
  89. H.-Y. Lane, Y.-C. Chang, Y.-C. Liu, C.-C. Chiu, and G. E. Tsai, “Sarcosine or D-serine add-on treatment for acute exacerbation of schizophrenia: a randomized, double-blind, placebo-controlled study,” Archives of General Psychiatry, vol. 62, no. 11, pp. 1196–1204, 2005. View at Publisher · View at Google Scholar · View at Scopus
  90. M. Weiser, U. Heresco-Levy, M. Davidson et al., “A multicenter, add-on randomized controlled trial of low-dose D-serine for negative and cognitive symptoms of schizophrenia,” Journal of Clinical Psychiatry, vol. 73, no. 6, pp. e728–e734, 2012. View at Publisher · View at Google Scholar · View at Scopus
  91. S. P. Singh and V. Singh, “Meta-analysis of the efficacy of adjunctive NMDA receptor modulators in chronic schizophrenia,” CNS Drugs, vol. 25, no. 10, pp. 859–885, 2011. View at Publisher · View at Google Scholar · View at Scopus
  92. G. E. Tsai and P.-Y. Lin, “Strategies to enhance N-Methyl-D-Aspartate receptor-mediated neurotransmission in schizophrenia, a critical review and meta-analysis,” Current Pharmaceutical Design, vol. 16, no. 5, pp. 522–537, 2010. View at Publisher · View at Google Scholar · View at Scopus
  93. M. Ermilov, E. Gelfin, R. Levin et al., “A pilot double-blind comparison of d-serine and high-dose olanzapine in treatment-resistant patients with schizophrenia,” Schizophrenia Research, vol. 150, no. 2-3, pp. 604–605, 2013. View at Publisher · View at Google Scholar
  94. J. P. Kaltenbach, C. E. Ganote, and F. A. Carone, “Renal tubular necrosis induced by compounds structurally related to D-serine,” Experimental and Molecular Pathology, vol. 30, no. 2, pp. 209–214, 1979. View at Google Scholar · View at Scopus
  95. F. A. Carone, S. Nakamura, and B. Goldman, “Urinary loss of glucose, phosphate, and protein by diffusion into proximal straight tubules injured by D-serine and maleic acid,” Laboratory Investigation, vol. 52, no. 6, pp. 605–610, 1985. View at Google Scholar · View at Scopus
  96. G. E. Tsai, H.-Y. Lane, C. M. Vandenberg, Y.-C. Liu, P. Tsai, and M. W. Jann, “Disposition of D-serine in healthy adults,” Journal of Clinical Pharmacology, vol. 48, no. 4, pp. 524–527, 2008. View at Publisher · View at Google Scholar · View at Scopus
  97. K. A. Johnson, P. J. Conn, and C. M. Niswender, “Glutamate receptors as therapeutic targets for Parkinson's disease,” CNS and Neurological Disorders—Drug Targets, vol. 8, no. 6, pp. 475–491, 2009. View at Publisher · View at Google Scholar · View at Scopus
  98. R. S. Marin, “Apathy: a neuropsychiatric syndrome,” Journal of Neuropsychiatry and Clinical Neurosciences, vol. 3, no. 3, pp. 243–254, 1991. View at Google Scholar · View at Scopus
  99. M. S. Starr, “Glutamate/dopamine D1/D2 balance in the basal ganglia and its relevance to Parkinson's disease,” Synapse, vol. 19, no. 4, pp. 264–293, 1995. View at Google Scholar · View at Scopus
  100. S. S. Nikam and L. T. Meltzer, “NR2B selective NMDA receptor antagonists,” Current Pharmaceutical Design, vol. 8, no. 10, pp. 845–855, 2002. View at Google Scholar · View at Scopus
  101. P. J. Blanchet, S. Konitsiotis, E. R. Whittemore, Z. L. Zhou, R. M. Woodward, and T. N. Chase, “Differing effects of N-methyl-D-aspartate receptor subtype selective antagonists on dyskinesias in levodopa-treated 1-methyl-4-phenyl-tetrahydropyridine monkeys,” Journal of Pharmacology and Experimental Therapeutics, vol. 290, no. 3, pp. 1034–1040, 1999. View at Google Scholar · View at Scopus
  102. J. N. C. Kew, J. G. Richards, V. Mutel, and J. A. Kemp, “Developmental changes in NMDA receptor glycine affinity and ifenprodil sensitivity reveal three distinct populations of NMDA receptors in individual rat cortical neurons,” The Journal of Neuroscience, vol. 18, no. 6, pp. 1935–1943, 1998. View at Google Scholar · View at Scopus
  103. R. Trullas and P. Skolnick, “Functional antagonists at the NMDA receptor complex exhibit antidepressant actions,” European Journal of Pharmacology, vol. 185, no. 1, pp. 1–10, 1990. View at Publisher · View at Google Scholar · View at Scopus
  104. R. Trullas, T. Folio, A. Young, R. Miller, K. Boje, and P. Skolnick, “1-Aminocyclopropanecarboxylates exhibit antidepressant and anxiolytic actions in animal models,” European Journal of Pharmacology, vol. 203, no. 3, pp. 379–385, 1991. View at Publisher · View at Google Scholar · View at Scopus
  105. R. T. Layer, P. Popik, T. Olds, and P. Skolnick, “Antidepressant-like actions of the polyamine site NMDA antagonist, eliprodil (SL-82.0715),” Pharmacology Biochemistry and Behavior, vol. 52, no. 3, pp. 621–627, 1995. View at Publisher · View at Google Scholar · View at Scopus
  106. P. Skolnick, P. Popik, and R. Trullas, “Glutamate-based antidepressants: 20 years on,” Trends in Pharmacological Sciences, vol. 30, no. 11, pp. 563–569, 2009. View at Publisher · View at Google Scholar · View at Scopus
  107. J. H. Krystal, G. Sanacora, and R. S. Duman, “Rapid-acting glutamatergic antidepressants: the path to ketamine and beyond,” Biological Psychiatry, vol. 73, no. 12, pp. 1133–1141, 2013. View at Publisher · View at Google Scholar · View at Scopus
  108. A. J. Rush, “Ketamine for treatment-resistant depression: ready or not for clinical use?” The American Journal of Psychiatry, vol. 170, no. 10, pp. 1079–1081, 2013. View at Publisher · View at Google Scholar
  109. U. Heresco-Levy, G. Gelfin, B. Bloch et al., “A randomized add-on trial of high-dose d-cycloserine for treatment-resistant depression,” International Journal of Neuropsychopharmacology, vol. 16, no. 3, pp. 501–506, 2013. View at Publisher · View at Google Scholar · View at Scopus
  110. R. Depoortère, G. Dargazanli, G. Estenne-Bouhtou et al., “Neurochemical, electrophysiological and pharmacological profiles of the selective inhibitor of the glycine transporter-1 SSR504734, a potential new type of antipsychotic,” Neuropsychopharmacology, vol. 30, no. 11, pp. 1963–1985, 2005. View at Publisher · View at Google Scholar · View at Scopus
  111. O. Malkesman, D. R. Austin, T. Tragon et al., “Acute d-serine treatment produces antidepressant-like effects in rodents,” International Journal of Neuropsychopharmacology, vol. 15, no. 8, pp. 1135–1148, 2012. View at Publisher · View at Google Scholar · View at Scopus
  112. M. Beneyto and J. H. Meador-Woodruff, “Lamina-specific abnormalities of NMDA receptor-associated postsynaptic protein transcripts in the prefrontal cortex in schizophrenia and bipolar disorder,” Neuropsychopharmacology, vol. 33, no. 9, pp. 2175–2186, 2008. View at Publisher · View at Google Scholar · View at Scopus
  113. G. Nowak, G. A. Ordway, and I. A. Paul, “Alterations in the N-methyl-D-aspartate (NMDA) receptor complex in the frontal cortex of suicide victims,” Brain Research, vol. 675, no. 1-2, pp. 157–164, 1995. View at Publisher · View at Google Scholar · View at Scopus
  114. U. Heresco-Levy, “D-serine effects in healthy volunteers and neuropsychiatric disorders,” in Proceedings of the CINP Thematic Meeting: Pharmacogenomics and Personalized Medicine, Jerusalem, Israel, April 2013.
  115. C. C. Huang, I. H. Wei, C. L. Huang et al., “Inhibition of glycine transporter-I as a novel mechanism for the treatment of depression,” Biological Psychiatry, vol. 74, no. 10, pp. 734–741, 2013. View at Publisher · View at Google Scholar
  116. C.-H. Lai, H.-Y. Lane, and G. E. Tsai, “Clinical and cerebral volumetric effects of sodium benzoate, a d-amino acid oxidase inhibitor, in a drug-nave patient with major depression,” Biological Psychiatry, vol. 71, no. 4, pp. e9–e10, 2012. View at Publisher · View at Google Scholar · View at Scopus
  117. S. Maeng, C. A. Zarate Jr., J. Du et al., “Cellular mechanisms underlying the antidepressant effects of ketamine: Role of α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptors,” Biological Psychiatry, vol. 63, no. 4, pp. 349–352, 2008. View at Publisher · View at Google Scholar · View at Scopus
  118. A. C. Lahti, B. Koffel, D. LaPorte, and C. A. Tamminga, “Subanesthetic doses of ketamine stimulate psychosis in schizophrenia,” Neuropsychopharmacology, vol. 13, no. 1, pp. 9–19, 1995. View at Publisher · View at Google Scholar · View at Scopus
  119. D. R. Lara, L. W. Bisol, and L. R. Munari, “Antidepressant, mood stabilizing and procognitive effects of very low dose sublingual ketamine in refractory unipolar and bipolar depression,” International Journal of Neuropsychopharmacology, vol. 16, no. 9, pp. 2111–2117, 2013. View at Publisher · View at Google Scholar · View at Scopus
  120. A. J. McDonald, “Glutamate and aspartate immunoreactive neurons of the rat basolateral amygdala: colocalization of excitatory amino acids and projections to the limbic circuit,” Journal of Comparative Neurology, vol. 365, no. 3, pp. 367–379, 1996. View at Google Scholar
  121. B. S. McEwen, “Plasticity of the hippocampus: adaptation to chronic stress and allostatic load,” Annals of the New York Academy of Sciences, vol. 933, pp. 265–277, 2001. View at Google Scholar · View at Scopus
  122. B. H. Harvey, F. Oosthuizen, L. Brand, G. Wegener, and D. J. Stein, “Stress-restress evokes sustained iNOS activity and altered GABA levels and NMDA receptors in rat hippocampus,” Psychopharmacology, vol. 175, no. 4, pp. 494–502, 2004. View at Publisher · View at Google Scholar · View at Scopus
  123. B. S. McEwen, “Gonadal and adrenal steroids regulate neurochemical and structural plasticity of the hippocampus via cellular mechanisms involving NMDA receptors,” Cellular and Molecular Neurobiology, vol. 16, no. 2, pp. 103–116, 1996. View at Publisher · View at Google Scholar · View at Scopus
  124. M. D. Horner and M. B. Hamner, “Neurocognitive functioning in posttraumatic stress disorder,” Neuropsychology Review, vol. 12, no. 1, pp. 15–30, 2002. View at Publisher · View at Google Scholar · View at Scopus
  125. M. Davis and K. M. Myers, “The role of glutamate and gamma-aminobutyric acid in fear extinction: clinical implications for exposure therapy,” Biological Psychiatry, vol. 52, no. 10, pp. 998–1007, 2002. View at Publisher · View at Google Scholar · View at Scopus
  126. M. Davis, K. Ressler, B. O. Rothbaum, and R. Richardson, “Effects of D-cycloserine on extinction: translation from preclinical to clinical work,” Biological Psychiatry, vol. 60, no. 4, pp. 369–375, 2006. View at Publisher · View at Google Scholar · View at Scopus
  127. M. M. Norberg, J. H. Krystal, and D. F. Tolin, “A meta-analysis of D-cycloserine and the facilitation of fear extinction and exposure therapy,” Biological Psychiatry, vol. 63, no. 12, pp. 1118–1126, 2008. View at Publisher · View at Google Scholar · View at Scopus
  128. J. A. J. Smits, D. Rosenfield, M. W. Otto et al., “D-cycloserine enhancement of exposure therapy for social anxiety disorder depends on the success of exposure sessions,” Journal of Psychiatric Research, vol. 47, no. 10, pp. 1455–1461, 2013. View at Publisher · View at Google Scholar · View at Scopus
  129. A. Sheinin, S. Shavit, and M. Benveniste, “Subunit specificity and mechanism of action of NMDA partial agonist D-cycloserine,” Neuropharmacology, vol. 41, no. 2, pp. 151–158, 2001. View at Publisher · View at Google Scholar · View at Scopus
  130. M. Horio, H. Mori, and K. Hashimoto, “Is D-cycloserine a prodrug for D-serine in the brain?” Biological Psychiatry, vol. 73, no. 12, pp. e33–e34, 2013. View at Publisher · View at Google Scholar · View at Scopus
  131. R. Richardson, L. Ledgerwood, and J. Cranney, “Facilitation of fear extinction by D-cycloserine: theoretical and clinical implications,” Learning and Memory, vol. 11, no. 5, pp. 510–516, 2004. View at Publisher · View at Google Scholar · View at Scopus
  132. K. J. Ressler, B. O. Rothbaum, L. Tannenbaum et al., “Cognitive enhancers as adjuncts to psychotherapy: use of D-cycloserine in phobic individuals to facilitate extinction of fear,” Archives of General Psychiatry, vol. 61, no. 11, pp. 1136–1144, 2004. View at Publisher · View at Google Scholar · View at Scopus
  133. M. J. Friedman, “What might the psychobiology of posttraumatic stress disorder teach us about future approaches to pharmacotherapy?” Journal of Clinical Psychiatry, vol. 61, no. 7, pp. 44–51, 2000. View at Google Scholar · View at Scopus
  134. A. Garakani, S. J. Mathew, and D. S. Charney, “Neurobiology of anxiety disorders and implications for treatment,” Mount Sinai Journal of Medicine, vol. 73, no. 7, pp. 941–949, 2006. View at Google Scholar · View at Scopus
  135. D. J. Nutt, “The psychobiology of posttraumatic stress disorder,” Journal of Clinical Psychiatry, vol. 61, no. 5, pp. 24–32, 2000. View at Google Scholar · View at Scopus
  136. U. Heresco-Levy, A. Vass, B. Bloch et al., “Pilot controlled trial of d-serine for the treatment of post-traumatic stress disorder,” International Journal of Neuropsychopharmacology, vol. 12, no. 9, pp. 1275–1282, 2009. View at Publisher · View at Google Scholar · View at Scopus
  137. M. A. Grados, M. W. Specht, H. M. Sung, and D. Fortune, “Glutamate drugs and pharmacogenetics of OCD: a pathway-based exploratory approach,” Expert Opinion on Drug Discovery, vol. 8, no. 12, pp. 1515–1527, 2013. View at Publisher · View at Google Scholar
  138. W. L. Cleveland, R. L. DeLaPaz, R. A. Fawwaz, and R. S. Challop, “High-dose glycine treatment of refractory obsessive-compulsive disorder and body dysmorphic disorder in a 5-year period,” Neural Plasticity, vol. 2009, Article ID 768398, 25 pages, 2009. View at Publisher · View at Google Scholar · View at Scopus
  139. W. M. Greenberg, M. M. Benedict, J. Doerfer et al., “Adjunctive glycine in the treatment of obsessive-compulsive disorder in adults,” Journal of Psychiatric Research, vol. 43, no. 6, pp. 664–670, 2009. View at Publisher · View at Google Scholar · View at Scopus
  140. Hoffmann-La Roche, “A study of bitopertin (RO4917838) in combination with selective serotonin reuptake inhibitors in patients with obsessive-compulsive disorder,” National Library of Medicine (US), Bethesda, Md, USA, 2013, NLM Identifier: NCT01674361, http://clinicaltrials.gov/show/NCT01674361.
  141. N. B. Farber, J. W. Newcomer, and J. W. Olney, “The glutamate synapse in neuropsychiatric disorders: focus on schizophrenia and Alzheimer's disease,” Progress in Brain Research, vol. 116, pp. 421–437, 1998. View at Google Scholar · View at Scopus
  142. H. W. Querfurth and F. M. LaFerla, “Alzheimer's disease,” The New England Journal of Medicine, vol. 362, no. 4, pp. 329–344, 2010. View at Publisher · View at Google Scholar · View at Scopus
  143. C. G. Parsons, A. Stöffler, and W. Danysz, “Memantine: a NMDA receptor antagonist that improves memory by restoration of homeostasis in the glutamatergic system—too little activation is bad, too much is even worse,” Neuropharmacology, vol. 53, no. 6, pp. 699–723, 2007. View at Publisher · View at Google Scholar · View at Scopus
  144. G. J. Uhász, B. Barkóczi, G. Vass et al., “Fibrillar Aβ1-42 enhances NMDA receptor sensitivity via the integrin signaling pathway,” Journal of Alzheimer's Disease, vol. 19, no. 3, pp. 1055–1067, 2010. View at Publisher · View at Google Scholar · View at Scopus
  145. E. Alberdi, M. V. Sánchez-Gómez, F. Cavaliere et al., “Amyloid β oligomers induce Ca2+ dysregulation and neuronal death through activation of ionotropic glutamate receptors,” Cell Calcium, vol. 47, no. 3, pp. 264–272, 2010. View at Publisher · View at Google Scholar · View at Scopus
  146. D. A. Butterfield and C. B. Pocernich, “The glutamatergic system and Alzheimer's disease: therapeutic implications,” CNS Drugs, vol. 17, no. 9, pp. 641–652, 2003. View at Publisher · View at Google Scholar · View at Scopus
  147. S. Lesné, C. Ali, C. Gabriel et al., “NMDA receptor activation inhibits α-secretase and promotes neuronal amyloid-β production,” The Journal of Neuroscience, vol. 25, no. 41, pp. 9367–9377, 2005. View at Publisher · View at Google Scholar · View at Scopus
  148. W. Gordon-Krajcer, E. Salińska, and J. W. Łazarewicz, “N-methyl-d-aspartate receptor-mediated processing of β-amyloid precursor protein in rat hippocampal slices: in vitro-superfusion study,” Folia Neuropathologica, vol. 40, no. 1, pp. 13–17, 2002. View at Google Scholar · View at Scopus
  149. K. Ando, K. Uemura, A. Kuzuya et al., “N-cadherin regulates p38 MAPK signaling via association with JNK-associated leucine zipper protein: implications for neurodegeneration in Alzheimer disease,” The Journal of Biological Chemistry, vol. 286, no. 9, pp. 7619–7628, 2011. View at Publisher · View at Google Scholar · View at Scopus
  150. K. Yamada and T. Nabeshima, “Changes in NMDA receptor/nitric oxide signaling pathway in the brain with aging,” Microscopy Research and Technique, vol. 43, no. 1, pp. 68–74, 1998. View at Google Scholar
  151. C. Ikonomidou, V. Stefovska, and L. Turski, “Neuronal death enhanced by N-methyl-D-aspartate antagonists,” Proceedings of the National Academy of Sciences of the United States of America, vol. 97, no. 23, pp. 12885–12890, 2000. View at Publisher · View at Google Scholar · View at Scopus
  152. S. M. Adams, J. C. De Rivero Vaccari, and R. A. Corriveau, “Pronounced cell death in the absence of NMDA receptors in the developing somatosensory thalamus,” The Journal of Neuroscience, vol. 24, no. 42, pp. 9441–9450, 2004. View at Publisher · View at Google Scholar · View at Scopus
  153. J. W. Olney, D. F. Wozniak, and N. B. Farber, “Excitotoxic neurodegeneration in Alzheimer disease: new hypothesis and new therapeutic strategies,” Archives of Neurology, vol. 54, no. 10, pp. 1234–1240, 1997. View at Google Scholar · View at Scopus
  154. D. F. Wozniak, K. Dikranian, M. J. Ishimaru et al., “Disseminated corticolimbic neuronal degeneration induced in rat brain by MK-801: potential relevance to Alzheimer's disease,” Neurobiology of Disease, vol. 5, no. 5, pp. 305–322, 1998. View at Publisher · View at Google Scholar · View at Scopus
  155. Y.-J. Huang, C.-H. Lin, H.-Y. Lane, and G. E. Tsai, “NMDA neurotransmission dysfunction in behavioral and psychological symptoms of Alzheimer's disease,” Current Neuropharmacology, vol. 10, no. 3, pp. 272–285, 2012. View at Publisher · View at Google Scholar · View at Scopus
  156. A. W. Procter, E. H. F. Wong, G. C. Stratmann, S. L. Lowe, and D. M. Bowen, “Reduced glycine stimulation of [3H]MK-801 binding in Alzheimer's disease,” Journal of Neurochemistry, vol. 53, no. 3, pp. 698–704, 1989. View at Google Scholar · View at Scopus
  157. E. L. Schaeffer and W. F. Gattaz, “Cholinergic and glutamatergic alterations beginning at the early stages of Alzheimer disease: participation of the phospholipase A2 enzyme,” Psychopharmacology, vol. 198, no. 1, pp. 1–27, 2008. View at Publisher · View at Google Scholar · View at Scopus
  158. E. M. Snyder, Y. Nong, C. G. Almeida et al., “Regulation of NMDA receptor trafficking by amyloid-β,” Nature Neuroscience, vol. 8, no. 8, pp. 1051–1058, 2005. View at Publisher · View at Google Scholar · View at Scopus
  159. A. Auffret, V. Gautheron, M. Repici et al., “Age-dependent impairment of spine morphology and synaptic plasticity in hippocampal CA1 neurons of a presenilin 1 transgenic mouse model of Alzheimer's disease,” The Journal of Neuroscience, vol. 29, no. 32, pp. 10144–10152, 2009. View at Publisher · View at Google Scholar · View at Scopus
  160. A. Auffret, V. Gautheron, M. P. Mattson, J. Mariani, and C. Rovira, “Progressive age-related impairment of the late long-term potentiation in Alzheimer's disease presenilin-1 mutant knock-in mice,” Journal of Alzheimer's Disease, vol. 19, no. 3, pp. 1021–1033, 2010. View at Publisher · View at Google Scholar · View at Scopus
  161. M. Martinez, A. Frank, E. Diez-Tejedor, and A. Hernanz, “Amino acid concentrations in cerebrospinal fluid and serum in Alzheimer's disease and vascular dementia,” Journal of Neural Transmission—Parkinson's Disease and Dementia Section, vol. 6, no. 1, pp. 1–9, 1993. View at Google Scholar · View at Scopus
  162. K. Hashimoto, T. Fukushima, E. Shimizu et al., “Possible role of D-serine in the pathophysiology of Alzheimer's disease,” Progress in Neuro-Psychopharmacology and Biological Psychiatry, vol. 28, no. 2, pp. 385–388, 2004. View at Publisher · View at Google Scholar · View at Scopus
  163. S. L. Lowe and D. M. Bowen, “Glutamic acid concentration in brains of patients with Alzheimer's disease,” Biochemical Society Transactions, vol. 18, no. 3, pp. 443–444, 1990. View at Google Scholar · View at Scopus
  164. X. Ye and T. J. Carew, “Small G protein signaling in neuronal plasticity and memory formation: the specific role of ras family proteins,” Neuron, vol. 68, no. 3, pp. 340–361, 2010. View at Publisher · View at Google Scholar · View at Scopus
  165. L. V. Kalia, S. K. Kalia, and M. W. Salter, “NMDA receptors in clinical neurology: excitatory times ahead,” The Lancet Neurology, vol. 7, no. 8, pp. 742–755, 2008. View at Publisher · View at Google Scholar · View at Scopus
  166. E. Scarpini, P. Scheltens, and H. Feldman, “Treatment of Alzheimer's disease: current status and new perspectives,” Lancet Neurology, vol. 2, no. 9, pp. 539–547, 2003. View at Publisher · View at Google Scholar · View at Scopus
  167. F. Gardoni and M. Di Luca, “New targets for pharmacological intervention in the glutamatergic synapse,” European Journal of Pharmacology, vol. 545, no. 1, pp. 2–10, 2006. View at Publisher · View at Google Scholar · View at Scopus
  168. L. Morè, A. Gravius, J. Nagel, B. Valastro, S. Greco, and W. Danysz, “Therapeutically relevant plasma concentrations of memantine produce significant L-N-methyl-D-aspartate receptor occupation and do not impair learning in rats,” Behavioural Pharmacology, vol. 19, no. 7, pp. 724–734, 2008. View at Publisher · View at Google Scholar · View at Scopus
  169. T. M. Ballard, M. Pauly-Evers, G. A. Higgins et al., “Severe impairment of NMDA receptor function in mice carrying targeted point mutations in the glycine binding site results in drug-resistant nonhabituating hyperactivity,” The Journal of Neuroscience, vol. 22, no. 15, pp. 6713–6723, 2002. View at Google Scholar · View at Scopus
  170. J. N. C. Kew, A. Koester, J.-L. Moreau et al., “Functional consequences of reduction in NMDA receptor glycine affinity in mice carrying targeted point mutations in the glycine binding site,” The Journal of Neuroscience, vol. 20, no. 11, pp. 4037–4049, 2000. View at Google Scholar · View at Scopus
  171. J. F. Flood, J. E. Morley, and T. H. Lanthorn, “Effect on memory processing by D-cycloserine, an agonist of the NMDA/glycine receptor,” European Journal of Pharmacology, vol. 221, no. 2-3, pp. 249–254, 1992. View at Publisher · View at Google Scholar · View at Scopus
  172. G. M. Schuster and W. J. Schmidt, “D-Cycloserine reverses the working memory impairment of hippocampal-lesioned rats in a spatial learning task,” European Journal of Pharmacology, vol. 224, no. 1, pp. 97–98, 1992. View at Publisher · View at Google Scholar · View at Scopus
  173. C. Randolph, J. W. Roberts, M. C. Tierney, D. Bravi, M. M. Mouradian, and T. N. Chase, “D-Cycloserine treatment of Alzheimer disease,” Alzheimer Disease and Associated Disorders, vol. 8, no. 3, pp. 198–205, 1994. View at Google Scholar · View at Scopus
  174. G. E. Tsai, W. E. Falk, and J. Gunther, “A preliminary study of D-cycloserine treatment in Alzheimer's disease,” Journal of Neuropsychiatry and Clinical Neurosciences, vol. 10, no. 2, pp. 224–226, 1998. View at Google Scholar · View at Scopus
  175. T. D. Fakouhi, S. S. Jhee, J. J. Sramek et al., “Evaluation of cycloserine in the treatment of Alzheimer's disease,” Journal of Geriatric Psychiatry and Neurology, vol. 8, no. 4, pp. 226–230, 1995. View at Google Scholar · View at Scopus
  176. P. Bado, C. Madeira, C. Vargas-Lopes et al., “Effects of low-dose d-serine on recognition and working memory in mice,” Psychopharmacology, vol. 218, no. 3, pp. 461–470, 2011. View at Publisher · View at Google Scholar · View at Scopus
  177. C. H. Lin, P. K. Chen, Y. C. Chang et al., “Benzoate, a D-amino acid oxidase inhibitor, for the treatment of early-phase Alzheimer disease: a randomized, double-blind, placebo-controlled trial,” Biological Psychiatry, vol. 75, no. 9, pp. 678–685, 2014. View at Publisher · View at Google Scholar
  178. B. Reisberg, R. Doody, A. Stöffler, F. Schmitt, S. Ferris, and H. J. Möbius, “Memantine in moderate-to-severe Alzheimer's disease,” The New England Journal of Medicine, vol. 348, no. 14, pp. 1333–1341, 2003. View at Publisher · View at Google Scholar · View at Scopus
  179. L. S. Schneider, K. S. Dagerman, J. P. T. Higgins, and R. McShane, “Lack of evidence for the efficacy of memantine in mild Alzheimer disease,” Archives of Neurology, vol. 68, no. 8, pp. 991–998, 2011. View at Publisher · View at Google Scholar · View at Scopus
  180. A. C. Ludolph, J. Brettschneider, and J. H. Weishaupt, “Amyotrophic lateral sclerosis,” Current Opinion in Neurology, vol. 25, no. 5, pp. 530–535, 2012. View at Publisher · View at Google Scholar · View at Scopus
  181. P. Paul and J. De Belleroche, “The role of D-amino acids in amyotrophic lateral sclerosis pathogenesis: a review,” Amino Acids, vol. 43, no. 5, pp. 1823–1831, 2012. View at Publisher · View at Google Scholar · View at Scopus
  182. J. Sasabe, Y. Miyoshi, M. Suzuki et al., “D-Amino acid oxidase controls motoneuron degeneration through D-serine,” Proceedings of the National Academy of Sciences of the United States of America, vol. 109, no. 2, pp. 627–632, 2012. View at Publisher · View at Google Scholar · View at Scopus
  183. J. Mitchell, P. Paul, H.-J. Chen et al., “Familial amyotrophic lateral sclerosis is associated with a mutation in D-amino acid oxidase,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 16, pp. 7556–7561, 2010. View at Publisher · View at Google Scholar · View at Scopus
  184. V. I. Tishkov and S. V. Khoronenkova, “D-Amino acid oxidase: structure, catalytic mechanism, and practical application,” Biochemistry, vol. 70, no. 1, pp. 40–54, 2005. View at Publisher · View at Google Scholar · View at Scopus
  185. H. Hasegawa, T. Matsukawa, Y. Shinohara, R. Konno, and T. Hashimoto, “Role of renal D-amino-acid oxidase in pharmacokinetics of D-leucine,” The American Journal of Physiology—Endocrinology and Metabolism, vol. 287, no. 1, pp. E160–E165, 2004. View at Publisher · View at Google Scholar · View at Scopus
  186. S. M. Smith, J. M. Uslaner, and P. H. Hutson, “The therapeutic potential of D-amino acid oxidase (DAAO) inhibitors,” Open Medicinal Chemistry Journal, vol. 4, no. 1, pp. 3–9, 2010. View at Google Scholar · View at Scopus
  187. D. Ferraris, B. Duvall, Y.-S. Ko et al., “Synthesis and biological evaluation of D-amino acid oxidase inhibitors,” Journal of Medicinal Chemistry, vol. 51, no. 12, pp. 3357–3359, 2008. View at Publisher · View at Google Scholar · View at Scopus
  188. K. Hashimoto, Y. Fujita, M. Horio et al., “Co-administration of a D-amino acid oxidase inhibitor potentiates the efficacy of D-serine in attenuating prepulse inhibition deficits after administration of dizocilpine,” Biological Psychiatry, vol. 65, no. 12, pp. 1103–1106, 2009. View at Publisher · View at Google Scholar · View at Scopus
  189. A. W. Krug, K. Völker, W. H. Dantzler, and S. Silbernagl, “Why is D-serine nephrotoxic and α-aminoisobutyric acid protective?” The American Journal of Physiology—Renal Physiology, vol. 293, no. 1, pp. F382–F390, 2007. View at Publisher · View at Google Scholar · View at Scopus
  190. World Health Organization, “Concise International Chemical Assessment, Document 26. Benzoic Acid and Sodium Benzoate,” World Health Organization, Geneva, Switzerland, 2000, http://www.who.int/ipcs/publications/cicad/cicad26_rev_1.pdf.
  191. W.-J. Zhao, Z.-Y. Gao, H. Wei et al., “Spinal D-amino acid oxidase contributes to neuropathic pain in rats,” Journal of Pharmacology and Experimental Therapeutics, vol. 332, no. 1, pp. 248–254, 2010. View at Publisher · View at Google Scholar · View at Scopus
  192. N. Gong, Z.-Y. Gao, Y.-C. Wang et al., “A series of d-amino acid oxidase inhibitors specifically prevents and reverses formalin-induced tonic pain in rats,” Journal of Pharmacology and Experimental Therapeutics, vol. 336, no. 1, pp. 282–293, 2011. View at Publisher · View at Google Scholar · View at Scopus
  193. H. K. Park, Y. Shishido, S. Ichise-Shishido et al., “Potential role for astroglial D-amino acid oxidase in extracellular D-serine metabolism and cytotoxicity,” Journal of Biochemistry, vol. 139, no. 2, pp. 295–304, 2006. View at Publisher · View at Google Scholar · View at Scopus
  194. A. Jana, K. K. Modi, A. Roy, J. A. Anderson, R. B. Van Breemen, and K. Pahan, “Up-regulation of neurotrophic factors by cinnamon and its metabolite sodium benzoate: therapeutic implications for neurodegenerative disorders,” Journal of Neuroimmune Pharmacology, vol. 8, no. 3, pp. 739–755, 2013. View at Publisher · View at Google Scholar · View at Scopus
  195. H. Y. Lane, C. H. Lin, M. F. Green et al., “Add-on treatment of benzoate for schizophrenia: a randomized, double-blind, placebo-controlled trial of D-amino acid oxidase inhibitor,” JAMA Psychiatry, vol. 70, no. 12, pp. 1267–1275, 2013. View at Publisher · View at Google Scholar