Archaea / 2005 / Article

Research Article | Open Access

Volume 1 |Article ID 591628 |

Sung-Jong Jeon, Kazuhiko Ishikawa, "Characterization of the Family I inorganic pyrophosphatase from Pyrococcus horikoshii OT3", Archaea, vol. 1, Article ID 591628, 5 pages, 2005.

Characterization of the Family I inorganic pyrophosphatase from Pyrococcus horikoshii OT3

Received08 Jan 2005
Accepted02 Feb 2005


A gene encoding for a putative Family inorganic pyrophosphatase (PPase, EC from the hyperthermophilic archaeon Pyrococcus horikoshii OT3 was cloned and the biochemical characteristics of the resulting recombinant protein were examined. The gene (Accession No. 1907) from P. horikoshii showed some identity with other Family I inorganic pyrophosphatases from archaea. The recombinant PPase from P. horikoshii (PhPPase) has a molecular mass of 24.5 kDa, determined by SDS-PAGE. This enzyme specifically catalyzed the hydrolysis of pyrophosphate and was sensitive to NaF. The optimum temperature and pH for PPase activity were 70 °C and 7.5, respectively. The half-life of heat inactivation was about 50 min at 105 °C. The heat stability of PhPPase was enhanced in the presence of Mg2+. A divalent cation was absolutely required for enzyme activity, Mg2+ being most effective; Zn2+, Co2+ and Mn2+ efficiently supported hydrolytic activity in a narrow range of concentrations (0.05– 0.5 mM). The Km for pyrophosphate and Mg2+ were 113 and 303 µM, respectively; and maximum velocity, Vmax, was estimated at 930 U mg–1.


  1. A. A. Baykov, B. S. Cooperman, A. Goldman, and R. Lahti, “Cytoplasmic inorganic pyrophosphatase,” in Inorganic Polyphosphates, H.C. Schroder, Ed., pp. 127–150, Vol. 23. Springer-Verlag, Berlin, 1999. View at: Google Scholar
  2. H. Celis and I. Romero, “The phosphate-pyrophosphate exchange and hydrolytic reactions of the membrane-bound pyrophosphatase of Rhodospirillum rubrum: effects of pH and divalent cations,” J. Bioenerg. Biomembr., vol. 19, pp. 255–272, 1987. View at: Google Scholar
  3. J. Chen, A. Brevet, M. Fromant, F. Lévêque, J. M. Schmitter, S. Blanquet, and P. Plateau, “Pyrophosphatase is essential for growth of Escherichia coli,” J. Bacteriol., vol. 172, pp. 5686–5689, 1990. View at: Google Scholar
  4. B. S. Cooperman, “The mechanism of action of yeast inorganic pyrophosphatase,” Methods Enzymol., vol. 87, pp. 526–548, 1982. View at: Google Scholar
  5. J. M. Gonzalez, Y. Masuchi, and Y. Masuchi, “Pyrococcus horikoshii sp. nov., a hyperthermophilic archaeon isolated from a hydrothermal vent at the Okinawa Trough.,” Extremophiles, vol. 2, pp. 123–130, 1998. View at: Google Scholar
  6. A. Hachimori, Y. Shiroya, A. Hirato, T. Miyahara, and T. Samejima, “Effects of divalent cations on thermophilic inorganic pyrophosphatase,” J. Biochem., vol. 86, pp. 121–130, 1979. View at: Google Scholar
  7. T. Hansen, C. Urbanke, V. M. Leppanen, A. Goldman, K. Brandenburg, and G. Schafer, “The extreme thermostable pyrophosphatase from Sulfolobus acidocaldarius: enzymatic and comparative biophysical characterization,” Arch. Biochem. Biophys., vol. 363, pp. 135–147, 1999. View at: Google Scholar
  8. E. H. Harutyunyan, I. P. Kuranova, and I. P. Kuranova, “X-ray structure of yeast inorganic pyrophosphatase complexed with manganese and phosphate,” Eur. J. Biochem., vol. 239, pp. 220–228, 1996. View at: Google Scholar
  9. P. Heikinheimo, J. Lehtonen, A. Baykov, R. Lahti, B. S. Cooperman, and A. Goldman, “The structural basis for pyrophosphatase catalysis,” Structure, vol. 4, pp. 1491–1508, 1996. View at: Google Scholar
  10. H. S. Hoe, H. K. Kim, and S. T. Kwon, “Expression in Escherichia coli of the thermostable inorganic pyrophosphatase from the Aquifex aeolicus and purification and characterization of the recombinant enzyme,” Protein Expr. Purif., vol. 23, pp. 242–248, 2001. View at: Google Scholar
  11. T. Ichiba, T. Shibasaki, E. Iizuka, A. Hachimori, and T. Samejima, “Cation-induced thermostability of yeast and Escherichia coli pyrophosphatases,” Biochem. Cell Biol., vol. 66, pp. 25–31, 1988. View at: Google Scholar
  12. J. Josse, “Constitutive inorganic pyrophosphatase of Escherichia coli.I. Purification and catalytic properties.,” J. Biol. Chem., vol. 241, pp. 1938–1947, 1966. View at: Google Scholar
  13. J. Kankare, G. S. Neal, T. Salminen, T. Glumoff, B. S. Cooperman, R. Lahti, and A. Goldman, “The structure of E.coli soluble inorganic pyrophosphatase at 2.7 Å resolution.,” Protein Eng., vol. 7, pp. 823–830, 1994. View at: Google Scholar
  14. Y. Kawarabayasi, M. Sawada, H. Horikawa et al., “Complete sequence and gene organization of the genome of a hyper-thermophilic archaebacterium, Pyrococcus horikoshii OT3,” DNA Res., vol. 5, pp. 55–76, 1998. View at: Google Scholar
  15. A. Kornberg, “On the metabolic significance of phosphorolytic and pyrophosphorolytic reactions,” in Horizons in Biochemistry, M. Kasha and B. Pullman, Eds., pp. 251–264, Academic Press, New York, 1962. View at: Google Scholar
  16. N. J. Kuhn, A. Wadeson, S. Ward, and T. W. Young, “Methanococcus jannaschii ORF mj0608 codes for a class C inorganic pyrophosphatase protected by Co2+ or Mn2+ ions against fluoride inhibition,” Arch. Biochem. Biophys., vol. 379, pp. 292–298, 2000. View at: Google Scholar
  17. B. Liu, M. Bartlam, and M. Bartlam, “Crystal structure of the hyperthermophilic inorganic pyrophosphatase from the archaeon Pyrococcus horikoshii,” Biophys. J., vol. 86, pp. 420–427, 2004. View at: Google Scholar
  18. M. Lundin, H. Baltscheffsky, and H. Ronne, “Yeast PPA2 gene encodes a mitochondrial inorganic pyrophosphatase that is essential for mitochondrial function,” J. Biol. Chem., vol. 266, pp. 12168–12172, 1991. View at: Google Scholar
  19. A. N. Parfenyev, A. Salminen, P. Halonen, A. Hachimori, A. A. Baykov, and R. Lahti, “Quaternary structure and metal ion requirement of family II pyrophosphatases from Bacillus subtilis, Streptococcus gordonii, and Streptococcusmutans,” J. Biol. Chem., vol. 276, pp. 24511–24518, 2001. View at: Google Scholar
  20. F. W. Perrella, “EZ-FIT: a practical curve-fitting microcomputer program for the analysis of enzyme kinetic data on IBM-PC compatible computers,” Anal. Biochem., vol. 174, pp. 437–447, 1988. View at: Google Scholar
  21. O. M. Richter and G. Schafer, “Cloning and sequencing of the gene for the cytoplasmic inorganic pyrophosphatase from the thermoacidophilic archaebacterium Thermoplasma acidophilum,” Eur. J. Biochem., vol. 209, pp. 351–355, 1992. View at: Google Scholar
  22. F. T. Robb, D. L. Maeder, and D. L. Maeder, “Genomic sequence of hyperthermophile, Pyrococcus furiosus: implications for physiology and enzymology,” Methods Enzymol., vol. 330, pp. 134–157, 2001. View at: Google Scholar
  23. T. Satoh, T. Samejima, and T. Samejima, “Molecular cloning, expression, and site-directed mutagenesis of inorganic pyrophosphatase from Thermus thermophilus HB8,” J. Biochem., vol. 124, pp. 79–88, 1998. View at: Google Scholar
  24. H. M. Schwarm, H. Vigenschow, and K. Knobloch, “Purification and properties of a soluble inorganic pyrophosphatase from Rhodopseudomonas palustris,” Biol. Chem. Hoppe-Seyler, vol. 367, pp. 119–126, 1986. View at: Google Scholar
  25. T. Shintani, T. Uchiumi, T. Yonezawa, A. Salminen, A. A. Baykov, R. Lahti, and A. Hachimori, “Cloning and expression of a unique inorganic pyrophosphatase from Bacillus subtilis: evidence for a new family of enzymes,” FEBS Lett., vol. 439, pp. 263–266, 1998. View at: Google Scholar
  26. A. I. Slesarev, K. V. Mezhevaya, K. S. Makarova et al., “The complete genome of hyperthermophile Methanopyrus kandleri AV19 and monophyly of archaeal methanogens,” Proc. Natl. Acad. Sci. USA, vol. 99, pp. 4644–4649, 2002. View at: Google Scholar
  27. D. R. Smith, L. A. Doucette-Stamm, C. Deloughery et al., “Complete genome sequence of Methanobacterium thermoautotrophicum delta H: functional analysis and comparative genomics,” J. Bacteriol., vol. 179, pp. 7135–7155, 1997. View at: Google Scholar
  28. S. Tabor and C. C. Richardson, “DNA sequence analysis with a modified bacteriophage T7 DNA polymerase: effect of pyrophosphorysis and metal ions,” J. Biol. Chem. , vol. 265, pp. 8322–8328, 1990. View at: Google Scholar
  29. N. Tominaga and T. Mori, “Purification and characterization of inorganic pyrophosphatase from Thiobacillus thiooxidans,” J. Biochem., vol. 81, pp. 477–483, 1977. View at: Google Scholar
  30. G. J. van Alebeek, J. T. Keltjens, and C. van Der Drift, “Purification and characterization of inorganic pyrophosphatase from Methanobacterium thermoautotrophicum (strain delta H),” Biochim. Biophys. Acta, vol. 1206, pp. 231–239, 1994. View at: Google Scholar
  31. P. B. Vander Horn, M. C. Davis, J. J. Cunniff et al., “ThermoSequenase DNA polymerase and T. acidophilum pyrophosphatase: new thermostable enzyme for DNA sequencing.,” BioTechniques, vol. 22, pp. 758–765, 1997. View at: Google Scholar
  32. T. Wakagi, C. H. Lee, and T. Oshima, “An extremely stable inorganic pyrophosphatase purified from the cytosol of a thermoacidophilic archaebacterium, Sulfolobus acidocaldarius strain 7,” Biochim. Biophys. Acta, vol. 1120, pp. 289–296, 1992. View at: Google Scholar
  33. Z. Yang and T. G. Wensel, “Inorganic pyrophosphatase from bovine retinal rod outer segments,” J. Biol. Chem., vol. 267, pp. 24634–24640, 1992. View at: Google Scholar
  34. T. W. Young, N. J. Kuhn, A. Wadeson, S. Ward, D. Burges, and G. D. Cooke, “Bacillus subtilis ORF yybQ encodes a manganese-dependent inorganic pyrophosphatase with distinctive properties: the first of a new class of soluble pyrophosphatase?” Microbiology, vol. 144, pp. 2563–2571, 1998. View at: Google Scholar

Copyright © 2005 Hindawi Publishing Corporation. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

More related articles

 PDF Download Citation Citation
 Order printed copiesOrder

Related articles