Table of Contents Author Guidelines Submit a Manuscript
Archaea
Volume 1, Issue 6, Pages 375-384
http://dx.doi.org/10.1155/2005/903614
Research Article

Role of the precorrin 6-X reductase gene in cobamide biosynthesis in Methanococcus maripaludis

1Department of Microbiology, The Ohio State University, Columbus, OH, USA
2Department of Microbiology, University of Georgia, Athens, GA 30602-2605, USA

Received 4 January 2005; Accepted 25 April 2005

Copyright © 2005 Hindawi Publishing Corporation. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. R. Abbanat and J. G. Ferry, “Resolution of component proteins in an enzyme complex from Methanosarcina thermophila catalyzing the synthesis or cleavage of acetyl-CoA,” Proc. Natl. Acad. Sci. USA, vol. 88, pp. 3272–3276, 1991. View at Google Scholar
  2. F. M. Ausubel, R. Brent, R. E. Kingston, D. D. Moore, J. A. Smith, J. G. Seidman, and K. Struhl, “Current protocols in molecular biology,” p. 4, Green Publishing Associates and Wiley-Interscience,, New York, Unit 2.4, 1994. View at Google Scholar
  3. F. Blanche, C. Robin, M. Couder, D. Faucher, L. Cauchois, B. Cameron, and J. Crouzet, “Purification, characterization, and molecular cloning of S-adenosyl-L-methionine:uroporphyrinogen III methyltransferase from Methanobacterium ivanovii,” J. Bacteriol., vol. 173, pp. 4637–4645, 1991. View at Google Scholar
  4. F. Blanche, D. Thibaut, A. Famechon, L. Debussche, B. Cameron, and J. Crouzet, “Precorrin-6x reductase from Pseudomonas denitrificans: purification and characterization of the enzyme and identification of the structural gene,” J. Bacteriol., vol. 174, pp. 1036–1042, 1992. View at Google Scholar
  5. R. De Mot, I. Nagy, G. Schoofs, and J. Vanderleyden, “Sequences of the cobalamin biosynthetic genes cobK, cobL and cobM from Rhodococcus sp. NI86/21.,” Gene, vol. 143, pp. 91–93, 1994. View at Google Scholar
  6. W. Eisenreich and A. Bacher, “Biosynthesis of 5-hydroxybenzimidazolylcobamid (factor III) in Methanobacterium thermoautotrophicum,” J. Biol. Chem., vol. 266, pp. 23840–23849, 1991. View at Google Scholar
  7. M. V. Fonseca and J. C. Escalante-Semerena, “An in vitro reducing system for the enzymic conversion of cobalamin to adenosylcobalamin,” J. Biol. Chem., vol. 276, pp. 32101–32108, 2001. View at Google Scholar
  8. W. L. Gardner and W. B. Whitman, “Expression vectors for Methanococcusmaripaludis: overexpression of acetohydroxyacid synthase and α−galactosidase,” Genetics, vol. 152, pp. 1439–1447, 1999. View at Google Scholar
  9. L. G. M. Gorris and C. van der Drift, “Cofactor contents of methanogenic bacteria reviewed,” Biofactors, vol. 4, pp. 139–145, 1994. View at Google Scholar
  10. L. G. M. Gorris, C. Van Der Drift, and G. D. Vogels, “Separation and quantification of cofactors from methanogenic bacteria by high–performance liquid chromatography: optimum and routine analyses,” J. Microbiol. Methods, vol. 8, pp. 175–190, 1988. View at Google Scholar
  11. E. L. Hendrickson, R. Kaul, Y. Zhou et al., “Complete genome sequence of the genetically tractable hydrogenotrophic methanogen Methanococcus maripaludis.,” J. Bacteriol., vol. 186, pp. 6956–6969, 2004. View at Google Scholar
  12. W. Henke, K. Herdel, K. Jung, D. Schnorr, and S. A. Loening, “Betaine improves the PCR amplification of GC-rich DNA sequences,” Nucleic Acids Res., vol. 25, pp. 3957–3958, 1997. View at Google Scholar
  13. M. Hildebrandt and W. Nellen, “Library-independent cloning of genomic fragments adjacent to vector integration sites—isolation of the EB4-PSV gene from a Dictyostelium gene disruption transformant,” Biochem. Biophys. Res. Commun., vol. 181, pp. 884–888, 1991. View at Google Scholar
  14. W. J. Jones, M. J. B. Paynter, and R. Gupta, “Characterization of Methanococcus maripaludis sp. nov., a new methanogen isolated from salt marsh sediment.,” Arch. Microbiol., vol. 135, pp. 91–97, 1983. View at Google Scholar
  15. W. J. Jones, W. B. Whitman, R. D. Fields, and R. S. Wolfe, “Growth and plating efficiency of methanococci on agar media,” Appl. Environ. Microbiol., vol. 46, pp. 220–226, 1983. View at Google Scholar
  16. J. W. Kansy, M. E. Carinato, L. M. Monteggia, and J. Konisky, “In vivo transcripts of the S-layer-encoding structural gene of the archaeon Methanococcus voltae,” Gene, vol. 148, pp. 131–135, 1994. View at Google Scholar
  17. S. W. M. Kengen, P. J. H. Daas, E. F. G. Duits, J. T. Keltjens, C. Van Der Drift, and G. D. Vogels, “Isolation of a 5-hydroxylbenzimidazoyl cobamide-containing enzyme involved in the methyltetrahydromethanopterin:coenzyme M methyltransferase reaction in Methanobacterium thermoautotrophicum,” Biochim. Biophys. Acta, vol. 1118, pp. 249–260, 1992. View at Google Scholar
  18. W. Kim and W. B. Whitman, “Isolation of acetate auxotrophs of the methane-producing archaeon Methanococcus maripaludis by random insertional mutagenesis,” Genetics, vol. 152, pp. 1429–1437, 1999. View at Google Scholar
  19. L. A. Maggio-Hall and J. C. Escalante-Semerena, “In vitro synthesis of the nucleotide loop of cobalamin by Salmonella typhimurium enzymes,” Proc. Natl. Acad. Sci. USA, vol. 96, pp. 11798–11803, 1999. View at Google Scholar
  20. M. R. Rondon, J. R. Trzebiatowski, and J. C. Escalante-Semerena, “Biochemistry and molecular genetics of cobalamin biosynthesis,” Prog. Nucleic Acid Res. Mol. Biol., vol. 56, pp. 347–384, 1997. View at Google Scholar
  21. J. Sambrook and D. W. Russell, “Molecular cloning: a laboratory manual,” p. 39, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, Units 6.50–6.55 and A9.38–9., 3rd Edn. edition, 2001. View at Google Scholar
  22. P. Scherer, V. Höllriegel, C. Krug, M. Bokel, and P. Renz, “On the biosynthesis of 5-hydroxybenzimidazoylcobamide (vitamin B12–factor III) in Methanosarcina barkeri,” Arch. Microbiol., vol. 148, pp. 354–359, 1984. View at Google Scholar
  23. E. Selkov, N. Maltsev, G. J. Olsen, R. Overbeek, and W. B. Whitman, “A reconstruction of the metabolism of Methanococcus jannaschii from sequence data,” Gene, vol. 197, pp. GC11–26, 1997. View at Google Scholar
  24. N. Shearer, A. P. Hinsley, R. J. M. Van Spanning, and S. Spiro, “Anaerobic growth of Paracoccus denitrificans requires cobalamin: characterization of cobK and cobJ genes,” J. Bacteriol., vol. 181, pp. 6907–6913, 1999. View at Google Scholar
  25. J. Shieh and W. B. Whitman, “Pathway of acetate assimilation in autotrophic and heterotrophic methanococci,” J. Bacteriol., vol. 169, pp. 5327–5329, 1987. View at Google Scholar
  26. C. Stathopoulos, W. Kim, and W. Kim, “Cysteinyl-tRNA synthetase is not essential for viability of the archaeon Methanococcus maripaludis,” Proc. Natl. Acad. Sci. USA, vol. 98, pp. 14292–14297, 2001. View at Google Scholar
  27. E. Stupperich and B. Kräutler, “Pseudo vitamin B12 or 5-hydroxybenzimidazoyl-cobamide are the corrinoids found in methanogenic bacteria,” Arch. Microbiol., vol. 149, pp. 268–271, 1988. View at Google Scholar
  28. M. G. Thomas and J. C. Escalante-Semerena, “Identification of an alternative nucleoside triphosphate: 5′-deoxyadenosylcobinamide phosphate nucleotidyltransferase in Methanobacterium thermoautotrophicum ΔH,” J. Bacteriol., vol. 182, pp. 4227–4233, 2000. View at Google Scholar
  29. D. L. Tumbula, R. A. Makula, and W. B. Whitman, “Transformation of Methanococcus maripaludis and identification of a PstI-like restriction system,” FEMS Microbiol. Lett., vol. 121, pp. 309–314, 1994. View at Google Scholar
  30. D. L. Tumbula, T. L. Bowen, and W. B. Whitman, “Growth of methanogens on solidified medium,” in Archaea: A Laboratory Manual, K. R. Sowers and H. J. Schreier, Eds., pp. 49–55, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, 1995. View at Google Scholar
  31. W. B. Whitman, J. Shieh, S. Sohn, D. S. Caras, and U. Premachandran, “Isolation and characterization of 22 mesophilic methanococci,” Syst. Appl. Microbiol., vol. 7, pp. 235–240, 1986. View at Google Scholar
  32. J. D. Woodson and J. C. Escalante-Semerena, “CbiZ, an amidohydrolase enzyme required for salvaging the coenzyme B12 precursor cobinamide in archaea,” Proc. Natl. Acad. Sci. USA, vol. 101, pp. 3591–3596, 2004. View at Google Scholar
  33. J. D. Woodson, R. F. Peck, M. P. Krebs, and J. C. Escalante-Semerena, “The cobY gene of the archaeon Halobacterium sp. Strain NRC-1 is required for de novo cobamide synthesis.,” J. Bacteriol., vol. 185, pp. 311–316, 2003. View at Google Scholar