Table of Contents Author Guidelines Submit a Manuscript
Archaea
Volume 2010, Article ID 106341, 6 pages
http://dx.doi.org/10.1155/2010/106341
Research Article

Extensive Lysine Methylation in Hyperthermophilic Crenarchaea: Potential Implications for Protein Stability and Recombinant Enzymes

1Centre for Biomolecular Sciences, University of St Andrews, Fife KY16 9ST, UK
2Departamento de Microbiologia, Facultat de Biologia, Universitat de Barcelona, Avenida. Diagonal 645, 08028 Barcelona, Spain

Received 20 May 2010; Accepted 1 July 2010

Academic Editor: Julie Maupin-Furlow

Copyright © 2010 Catherine H. Botting et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. F. N. Chang, “A sensitive method for the quantitative determination of minor bases in ribosomal RNA,” Analytical Biochemistry, vol. 63, no. 2, pp. 371–379, 1975. View at Google Scholar · View at Scopus
  2. W. K. Paik and S. Kim, “Protein methylation,” Science, vol. 174, no. 4005, pp. 114–119, 1971. View at Google Scholar · View at Scopus
  3. W. K. Paik, D. C. Paik, and S. Kim, “Historical review: the field of protein methylation,” Trends in Biochemical Sciences, vol. 32, no. 3, pp. 146–152, 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. C. Martin and Y. Zhang, “The diverse functions of histone lysine methylation,” Nature Reviews Molecular Cell Biology, vol. 6, no. 11, pp. 838–849, 2005. View at Publisher · View at Google Scholar · View at Scopus
  5. R. C. Trievel, E. M. Flynn, R. L. Houtz, and J. H. Hurley, “Mechanism of multiple lysine methylation by the SET domain enzyme Rubisco LSMT,” Nature Structural Biology, vol. 10, no. 7, pp. 545–552, 2003. View at Publisher · View at Google Scholar · View at Scopus
  6. R. L. Houtz, R. Magnani, N. R. Nayak, and L. M. A. Dirk, “Co- and post-translational modifications in Rubisco: unanswered questions,” Journal of Experimental Botany, vol. 59, no. 7, pp. 1635–1645, 2008. View at Publisher · View at Google Scholar · View at Scopus
  7. H. Iwabata, M. Yoshida, and Y. Komatsu, “Proteomic analysis of organ-specific post-translational lysine-acetylation and -methylation in mice by use of anti-acetyllysine and -methyllysine mouse monoclonal antibodies,” Proteomics, vol. 5, no. 18, pp. 4653–4664, 2005. View at Publisher · View at Google Scholar · View at Scopus
  8. C. N. Pang, E. Gasteiger, and M. R. Wilkins, “Identification of arginine- and lysine-methylation in the proteome of Saccharomyces cerevisiae and its functional implications,” BMC Genomics, vol. 11, article 92, 2010. View at Publisher · View at Google Scholar
  9. K. L. Manzur and M.-M. Zhou, “An archaeal SET domain protein exhibits distinct lysine methyltransferase activity towards DNA-associated protein MC1-α,” FEBS Letters, vol. 579, no. 17, pp. 3859–3865, 2005. View at Publisher · View at Google Scholar · View at Scopus
  10. B. Maras, V. Consalvi, R. Chiaraluce et al., “The protein sequence of glutamate dehydrogenase from Sulfolobus solfataricus, a thermoacidophilic archaebacterium. Is the presence of N-ε-methyllysine related to thermostability?” European Journal of Biochemistry, vol. 203, no. 1-2, pp. 81–87, 1992. View at Google Scholar · View at Scopus
  11. B. Maras, S. Valiante, R. Chiaraluce et al., “The amino acid sequence of glutamate dehydrogenase from Pyrococcus furiosus, a hyperthermophilic archaebacterium,” Journal of Protein Chemistry, vol. 13, no. 2, pp. 253–259, 1994. View at Google Scholar · View at Scopus
  12. F. Febbraio, A. Andolfo, F. Tanfani et al., “Thermal stability and aggregation of Sulfolobus solfataricus β-glycosidase are dependent upon the N-ε-methylation of specific lysyl residues: critical role of in vivo post-translational modifications,” Journal of Biological Chemistry, vol. 279, no. 11, pp. 10185–10194, 2004. View at Publisher · View at Google Scholar · View at Scopus
  13. H. Baumann, S. Knapp, T. Lundbäck, R. Ladenstein, and T. Härd, “Solution structure and DNA-binding properties of a thermostable protein from the archaeon Sulfolobus solfataricus,” Nature Structural Biology, vol. 1, no. 11, pp. 808–819, 1994. View at Google Scholar · View at Scopus
  14. S. Paytubi and M. F. White, “The crenarchaeal DNA damage-inducible transcription factor B paralogue TFB3 is a general activator of transcription,” Molecular Microbiology, vol. 72, no. 6, pp. 1487–1499, 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. A. Shevchenko, M. Wilm, O. Vorm, and M. Mann, “Mass spectrometric sequencing of proteins from silver-stained polyacrylamide gels,” Analytical Chemistry, vol. 68, no. 5, pp. 850–858, 1996. View at Publisher · View at Google Scholar · View at Scopus
  16. Y. Korkhin, U. M. Unligil, O. Littlefield et al., “Evolution of complex RNA polymerases: the complete archaeal RNA polymerase structure,” PLoS Biology, vol. 7, no. 5, article e102, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. A. Hirata, B. J. Klein, and K. S. Murakami, “The X-ray crystal structure of RNA polymerase from Archaea,” Nature, vol. 451, no. 7180, pp. 851–854, 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. S. Paytubi and M. F. White, “The crenarchaeal DNA damage-inducible transcription factor B paralogue TFB3 is a general activator of transcription,” Molecular Microbiology, vol. 72, no. 6, pp. 1487–1499, 2009. View at Publisher · View at Google Scholar · View at Scopus
  19. T. A. Couttas, M. J. Raftery, G. Bernardini, and M. R. Wilkins, “Immonium ion scanning for the discovery of post-translational modifications and its application to histones,” Journal of Proteome Research, vol. 7, no. 7, pp. 2632–2641, 2008. View at Publisher · View at Google Scholar · View at Scopus
  20. D. T. Mackay, C. H. Botting, G. L. Taylor, and M. F. White, “An acetylase with relaxed specificity catalyses protein N-terminal acetylation in Sulfolobus solfataricus,” Molecular Microbiology, vol. 64, no. 6, pp. 1540–1548, 2007. View at Publisher · View at Google Scholar · View at Scopus
  21. G. E. Crooks, G. Hon, J.-M. Chandonia, and S. E. Brenner, “WebLogo: a sequence logo generator,” Genome Research, vol. 14, no. 6, pp. 1188–1190, 2004. View at Publisher · View at Google Scholar · View at Scopus
  22. X. Luo, U. Schwarz-Linek, C. H. Botting, R. Hensel, B. Siebers, and M. F. White, “CC1, a novel crenarchaeal DNA binding protein,” Journal of Bacteriology, vol. 189, no. 2, pp. 403–409, 2007. View at Publisher · View at Google Scholar · View at Scopus
  23. P. A. Kirkland, M. A. Humbard, C. J. Daniels, and J. A. Maupin-Furlow, “Shotgun proteomics of the haloarchaeon haloferax volcanii,” Journal of Proteome Research, vol. 7, no. 11, pp. 5033–5039, 2008. View at Publisher · View at Google Scholar · View at Scopus
  24. Y. Zivanovic, J. Armengaud, A. Lagorce et al., “Genome analysis and genome-wide proteomics of Thermococcus gammatolerans, the most radioresistant organism known amongst the Archaea,” Genome Biology, vol. 10, no. 6, article R70, 2009. View at Publisher · View at Google Scholar · View at Scopus
  25. A. M. Lee, J. R. Sevinsky, J. L. Bundy, A. M. Grunden, and J. L. Stephenson Jr., “Proteomics of Pyrococcus furiosus, a hyperthermophilic archaeon refractory to traditional methods,” Journal of Proteome Research, vol. 8, no. 8, pp. 3844–3851, 2009. View at Publisher · View at Google Scholar · View at Scopus
  26. Q. Xia, T. Wang, E. L. Hendrickson, T. J. Lie, M. Hackett, and J. A. Leigh, “Quantitative proteomics of nutrient limitation in the hydrogenotrophic methanogen Methanococcus maripaludis,” BMC Microbiology, vol. 9, article 149, 2009. View at Publisher · View at Google Scholar · View at Scopus
  27. C. Brochier-Armanet, B. Boussau, S. Gribaldo, and P. Forterre, “Mesophilic crenarchaeota: proposal for a third archaeal phylum, the Thaumarchaeota,” Nature Reviews Microbiology, vol. 6, no. 3, pp. 245–252, 2008. View at Publisher · View at Google Scholar · View at Scopus
  28. E. Hughes, R. M. Burke, and A. J. Doig, “Inhibition of toxicity in the β-amyloid peptide fragment β-(25-35) using N-methylated derivatives. A general strategy to prevent amyloid formation,” Journal of Biological Chemistry, vol. 275, no. 33, pp. 25109–25115, 2000. View at Publisher · View at Google Scholar · View at Scopus
  29. M. Šebela, T. Štosová, J. Havliš et al., “Thermostable trypsin conjugates for high-throughput proteomics: synthesis and performance evaluation,” Proteomics, vol. 6, no. 10, pp. 2959–2963, 2006. View at Publisher · View at Google Scholar · View at Scopus
  30. Y. Kim, P. Quartey, H. Li et al., “Large-scale evaluation of protein reductive methylation for improving protein crystallization,” Nature Methods, vol. 5, no. 10, pp. 853–854, 2008. View at Publisher · View at Google Scholar · View at Scopus