Table of Contents Author Guidelines Submit a Manuscript
Archaea
Volume 2010, Article ID 315108, 9 pages
http://dx.doi.org/10.1155/2010/315108
Research Article

Identification of Residues Important for the Activity of Haloferax volcanii AglD, a Component of the Archaeal N-Glycosylation Pathway

Department of Life Sciences, Ben Gurion University, P. O. Box 653, Beersheva 84105, Israel

Received 11 January 2010; Accepted 10 February 2010

Academic Editor: Julie Maupin-Furlow

Copyright © 2010 Lina Kaminski and Jerry Eichler. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. F. Mescher and J. L. Strominger, “Purification and characterization of a prokaryotic glycoprotein from the cell envelope of Halobacterium salinarium,” The Journal of Biological Chemistry, vol. 251, no. 7, pp. 2005–2014, 1976. View at Google Scholar · View at Scopus
  2. M. Abu-Qarn, J. Eichler, and N. Sharon, “Not just for Eukarya anymore: N-glycosylation in Bacteria and Archaea,” Current Opinion in Structural Biology, vol. 18, no. 5, pp. 544–550, 2008. View at Publisher · View at Google Scholar · View at Scopus
  3. S. Yurist-Doutsch, B. Chaban, D. J. VanDyke, K. F. Jarrell, and J. Eichler, “Sweet to the extreme: protein glycosylation in Archaea,” Molecular Microbiology, vol. 68, no. 5, pp. 1079–1084, 2008. View at Publisher · View at Google Scholar · View at Scopus
  4. D. J. VanDyke, J. Wu, and S. M. Logan, “Identification of genes involved in the assembly and attachment of a novel flagellin N-linked tetrasaccharide important for motility in the archaeon Methanococcus maripaludis,” Molecular Microbiology, vol. 72, no. 3, pp. 633–644, 2009. View at Publisher · View at Google Scholar · View at Scopus
  5. M. Abu-Qarn and J. Eichler, “Protein N-glycosylation in Archaea: defining Haloferax volcanii genes involved in S-layer glycoprotein glycosylation,” Molecular Microbiology, vol. 61, pp. 511–525, 2006. View at Google Scholar
  6. B. Chaban, S. Voisin, J. Kelly, S. M. Logan, and K. F. Jarrell, “Identification of genes involved in the biosynthesis and attachment of Methanococcus voltae N-linked glycans: insight into N-linked glycosylation pathways in Archaea,” Molecular Microbiology, vol. 61, no. 1, pp. 259–268, 2006. View at Publisher · View at Google Scholar · View at Scopus
  7. M. Igura, N. Maita, J. Kamishikiryo et al., “Structure-guided identification of a new catalytic motif of oligosaccharyltransferase,” EMBO Journal, vol. 27, no. 1, pp. 234–243, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. N. Taniguchi, A. Ekuni, J. H. Ko et al., “A glycomic approach to the identification and characterization of glycoprotein function in cells transfected with glycosyltransferase genes,” Proteomics, vol. 1, no. 2, pp. 239–247, 2001. View at Google Scholar · View at Scopus
  9. P. M. Coutinho, E. Deleury, G. J. Davies, and B. Henrissat, “An evolving hierarchical family classification for glycosyltransferases,” Journal of Molecular Biology, vol. 328, no. 2, pp. 307–317, 2003. View at Publisher · View at Google Scholar · View at Scopus
  10. B. I. Cantarel, P. M. Coutinho, C. Rancurel, T. Bernard, V. Lombard, and B. Henrissat, “The Carbohydrate-Active EnZymes database (CAZy): an expert resource for glycogenomics,” Nucleic Acids Research, vol. 37, supplement 1, pp. D233–D238, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. L. L. Lairson, B. Henrissat, G. J. Davies, and S. G. Withers, “Glycosyl transferases: structures, functions, and mechanisms,” Annual Review of Biochemistry, vol. 77, pp. 521–555, 2008. View at Publisher · View at Google Scholar · View at Scopus
  12. B. Henrissat, G. Sulzenbacher, and Y. Bourne, “Glycosyltransferases, glycoside hydrolases: surprise, surprise!,” Current Opinion in Structural Biology, vol. 18, no. 5, pp. 527–533, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. C. Breton, E. Bettler, D. H. Joziasse, R. A. Geremia, and A. Imberty, “Sequence-function relationships of prokaryotic and eukaryotic galactosyltransferases,” Journal of Biochemistry, vol. 123, no. 6, pp. 1000–1009, 1998. View at Google Scholar · View at Scopus
  14. C. A. Wiggins and S. Munro, “Activity of the yeast MNN1 alpha-1,3-mannosyltransferase requires a motif conserved in many other families of glycosyltransferases,” Proceedings of the National Academy of Sciences of the United States of America, vol. 95, pp. 7945–7950, 1998. View at Google Scholar
  15. C. Breton and A. Imberty, “Structure/function studies of glycosyltransferases,” Current Opinion in Structural Biology, vol. 9, no. 5, pp. 563–571, 1999. View at Publisher · View at Google Scholar · View at Scopus
  16. U. M. Unligil and J. M. Rini, “Glycosyltransferase structure and mechanism,” Current Opinion in Structural Biology, vol. 10, no. 5, pp. 510–517, 2000. View at Publisher · View at Google Scholar · View at Scopus
  17. C. Breton, L. Šnajdrová, C. Jeanneau, J. Koča, and A. Imberty, “Structures and mechanisms of glycosyltransferases,” Glycobiology, vol. 16, no. 2, pp. 29R–37R, 2006. View at Publisher · View at Google Scholar · View at Scopus
  18. J. A. Campbell, G. J. Davies, V. Bulone, and B. Henrissat, “A classification of nucleotide-diphospho-sugar glycosyltransferases based on amino acid sequence similarities,” Biochemical Journal, vol. 326, no. 3, pp. 929–939, 1997. View at Google Scholar
  19. I. M. Saxena, R. M. Brown Jr., M. Fevre, R. A. Geremia, and B. Henrissat, “Multidomain architecture of β-glycosyl transferases: implications for mechanism of action,” Journal of Bacteriology, vol. 177, no. 6, pp. 1419–1424, 1995. View at Google Scholar · View at Scopus
  20. S. J. Charnock and G. J. Davies, “Structure of the nucleotide-diphospho-sugar transferase, SpsA from Bacillus subtilis, in native and nucleotide-complexed forms,” Biochemistry, vol. 38, no. 20, pp. 6380–6385, 1999. View at Publisher · View at Google Scholar · View at Scopus
  21. C. Garinot-Schneider, A. C. Lellouch, and R. A. Geremia, “Identification of essential amino acid residues in the Sinorhizobium meliloti glucosyltransferase ExoM,” The Journal of Biological Chemistry, vol. 275, no. 40, pp. 31407–31413, 2000. View at Google Scholar · View at Scopus
  22. W. J. Keenleyside, A. J. Clarke, and C. Whitfield, “Identification of residues involved in catalytic activity of the inverting glycosyl transferase WbbE from Salmonella enterica serovar borreze,” Journal of Bacteriology, vol. 183, no. 1, pp. 77–85, 2001. View at Publisher · View at Google Scholar · View at Scopus
  23. B. W. Murray, S. Takayama, J. Schultz, and C.-H. Wong, “Mechanism and specificity of human α-1,3-fucosyltransferase V,” Biochemistry, vol. 35, no. 34, pp. 11183–11195, 1996. View at Publisher · View at Google Scholar · View at Scopus
  24. L. C. Pedersen, T. A. Darden, and M. Negishi, “Crystal structure of β1,3-glucuronyltransferase I in complex with active donor substrate UDP-GlcUA,” The Journal of Biological Chemistry, vol. 277, no. 24, pp. 21869–21873, 2002. View at Publisher · View at Google Scholar · View at Scopus
  25. S. Kakuda, T. Shiba, M. Ishiguro et al., “Structural basis for acceptor substrate recognition of a human glucuronyltransferase, GlcAT-P, an enzyme critical in the biosynthesis of the carbohydrate epitope HNK-1,” The Journal of Biological Chemistry, vol. 279, no. 21, pp. 22693–22703, 2004. View at Publisher · View at Google Scholar · View at Scopus
  26. M. Abu-Qarn, S. Yurist-Doutsch, A. Giordano et al., “Haloferax volcanii AglB and AglD are involved in N-glycosylation of the S-layer glycoprotein and proper assembly of the surface layer,” Journal of Molecular Biology, vol. 374, no. 5, pp. 1224–1236, 2007. View at Publisher · View at Google Scholar · View at Scopus
  27. H. Magidovich, S. Yurist-Doutsch, Z. Konrad et al., “AglP is a S-adenosyl-L-methionine-dependent methyltransferase that participates in the N-glycosylation pathway of Haloferax volcanii,” Molecular Microbiology, vol. 76, pp. 190–199, 2010. View at Google Scholar
  28. M. Mevarech and R. Werczberger, “Genetic transfer in Halobacterium volcanii,” Journal of Bacteriology, vol. 162, pp. 461–462, 1985. View at Google Scholar
  29. N. Plavner and J. Eichler, “Defining the topology of the N-glycosylation pathway in the halophilic archaeon Haloferax volcanii,” Journal of Bacteriology, vol. 190, no. 24, pp. 8045–8052, 2008. View at Publisher · View at Google Scholar · View at Scopus
  30. G. Dubray and G. Bezard, “A highly sensitive periodic acid-silver stain for 1,2-diol groups of glycoproteins and polysaccharides in polyacrylamide gels,” Analytical Biochemistry, vol. 119, no. 2, pp. 325–329, 1982. View at Google Scholar · View at Scopus
  31. H. Huber, M. J. Hohn, R. Rachel, T. Fuchs, V. C. Wimmer, and K. O. Stetter, “A new phylum of Archaea represented by a nanosized hyperthermophilic symbiont,” Nature, vol. 417, no. 6884, pp. 63–67, 2002. View at Publisher · View at Google Scholar · View at Scopus
  32. E. Waters, M. J. Hohn, and I. Ahel, “The genome of Nanoarchaeum equitans: insights into early archaeal evolution and derived parasitism,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, pp. 12984–12988, 2003. View at Google Scholar
  33. H. Magidovich and J. Eichler, “Glycosyltransferases and oligosaccharyltransferases in Archaea: putative components of the N-glycosylation pathway in the third domain of life,” FEMS Microbiology Letters, vol. 300, pp. 120–130, 2009. View at Google Scholar
  34. M. V. Weinberg, G. J. Schut, S. Brehm, S. Datta, and M. W. W. Adams, “Cold shock of a hyperthermophilic archaeon: Pyrococcus furiosus exhibits multiple responses to a suboptimal growth temperature with a key role for membrane-bound glycoproteins,” Journal of Bacteriology, vol. 187, no. 1, pp. 336–348, 2005. View at Publisher · View at Google Scholar · View at Scopus
  35. D. Kohda, M. Yamada, M. Igura, J Kamishikiryo, and K. Maenaka, “New oligosaccharyltransferase assay method,” Glycobiology, vol. 17, pp. 1175–1182, 2007. View at Google Scholar
  36. L. L. Yang and A. Haug, “Purification and partial characterization of a procaryotic glycoprotein from the plasma membrane of Thermoplasma acidophilum,” Biochimica et Biophysica Acta, vol. 556, no. 2, pp. 265–277, 1979. View at Google Scholar · View at Scopus
  37. Y. Urushibata, S. Ebisu, and I. Matsui, “A thermostable dolichol phosphoryl mannose synthase responsible for glycoconjugate synthesis of the hyperthermophilic archaeon Pyrococcus horikoshii,” Extremophiles, vol. 12, no. 5, pp. 665–676, 2008. View at Publisher · View at Google Scholar · View at Scopus
  38. B. C. R. Zhu and R. A. Laine, “Dolichyl-phosphomannose synthase from the Archae Thermoplasma acidophilum,” Glycobiology, vol. 6, no. 8, pp. 811–816, 1996. View at Publisher · View at Google Scholar · View at Scopus