Table of Contents Author Guidelines Submit a Manuscript
Volume 2010 (2010), Article ID 453642, 14 pages
Review Article

Selenocysteine, Pyrrolysine, and the Unique Energy Metabolism of Methanogenic Archaea

1Institut für Molekulare Biowissenschaften, Molekulare Mikrobiologie & Bioenergetik, Johann Wolfgang Goethe-Universität, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
2Department of Microbiology, The Ohio State University, 376 Biological Sciences Building 484 West 12th Avenue Columbus, OH 43210-1292, USA

Received 15 June 2010; Accepted 13 July 2010

Academic Editor: Jerry Eichler

Copyright © 2010 Michael Rother and Joseph A. Krzycki. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Methanogenic archaea are a group of strictly anaerobic microorganisms characterized by their strict dependence on the process of methanogenesis for energy conservation. Among the archaea, they are also the only known group synthesizing proteins containing selenocysteine or pyrrolysine. All but one of the known archaeal pyrrolysine-containing and all but two of the confirmed archaeal selenocysteine-containing protein are involved in methanogenesis. Synthesis of these proteins proceeds through suppression of translational stop codons but otherwise the two systems are fundamentally different. This paper highlights these differences and summarizes the recent developments in selenocysteine- and pyrrolysine-related research on archaea and aims to put this knowledge into the context of their unique energy metabolism.