Table of Contents Author Guidelines Submit a Manuscript
Archaea
Volume 2010, Article ID 690737, 16 pages
http://dx.doi.org/10.1155/2010/690737
Research Article

The Genome Sequence of Methanohalophilus mahii SLPT Reveals Differences in the Energy Metabolism among Members of the Methanosarcinaceae Inhabiting Freshwater and Saline Environments

1DSMZ—German Collection of Microorganisms and Cell Cultures GmbH, 38124 Braunschweig, Germany
2DOE Joint Genome Institute, Walnut Creek, CA 94598-1632, USA
3Los Alamos National Laboratory, Bioscience Division, Los Alamos, NM 87545-001, USA
4Biological Data Management and Technology Center, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
5Oak Ridge National Laboratory, Oak Ridge, TN 37830-8026, USA
6HZI—Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
7Davis Genome Center, University of California, Davis, CA 95817, USA

Received 24 August 2010; Accepted 9 November 2010

Academic Editor: Valérie de Crécy-Lagard

Copyright © 2010 Stefan Spring et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. S. Oremland and S. Polcin, “Methanogenesis and sulfate reduction: competitive and noncompetitive substrates in estuarine sediments,” Applied and Environmental Microbiology, vol. 44, pp. 1270–1276, 1982. View at Google Scholar
  2. J. R. Paterek and P. H. Smith, “Methanophilus mahii gen. nov., sp. nov., a methylotrophic halophilic methanogen,” International Journal of Systematic Bacteriology, vol. 38, no. 1, pp. 122–123, 1988. View at Google Scholar · View at Scopus
  3. J. R. Paterek and P. H. Smith, “Isolation and characterization of a halophilic methanogen from Great Salt Lake,” Applied and Environmental Microbiology, vol. 50, no. 4, pp. 877–881, 1985. View at Google Scholar · View at Scopus
  4. J. Chun, J. H. Lee, Y. Jung et al., “EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences,” International Journal of Systematic and Evolutionary Microbiology, vol. 57, no. 10, pp. 2259–2261, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. C. E. Robertson, J. R. Spear, J. K. Harris, and N. R. Pace, “Diversity and stratification of archaea in a hypersaline microbial Mat,” Applied and Environmental Microbiology, vol. 75, no. 7, pp. 1801–1810, 2009. View at Publisher · View at Google Scholar · View at Scopus
  6. K. B. Sørensen, D. E. Canfield, A. P. Teske, and A. Oren, “Community composition of a hypersaline endoevaporitic microbial mat,” Applied and Environmental Microbiology, vol. 71, no. 11, pp. 7352–7365, 2005. View at Publisher · View at Google Scholar · View at Scopus
  7. List of growth media used at DSMZ, http://www.dsmz.de/microorganisms/media_list.php.
  8. D. Wu, P. Hugenholtz, K. Mavromatis et al., “A phylogeny-driven genomic encyclopaedia of Bacteria and Archaea,” Nature, vol. 462, no. 7276, pp. 1056–1060, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. H. P. Klenk and M. Göker, “En route to a genome-based classification of Archaea and Bacteria?” Systematic and Applied Microbiology, vol. 33, no. 4, pp. 175–182, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. K. Liolios, I. A. Chen, K. Mavromatis et al., “The Genomes On Line Database (GOLD) in 2009: status of genomic and metagenomic projects and their associated metadata,” Nucleic Acids Research, vol. 38, pp. D346–D354, 2009. View at Publisher · View at Google Scholar
  11. B. Ewing and P. Green, “Base-calling of automated sequencer traces using phred. II. Error probabilities,” Genome Research, vol. 8, no. 3, pp. 186–194, 1998. View at Google Scholar · View at Scopus
  12. B. Ewing, L. Hillier, M. C. Wendl, and P. Green, “Base-calling of automated sequencer traces using phred. I. Accuracy assessment,” Genome Research, vol. 8, no. 3, pp. 175–185, 1998. View at Google Scholar · View at Scopus
  13. D. Gordon, C. Abajian, and P. Green, “Consed: a graphical tool for sequence finishing,” Genome Research, vol. 8, no. 3, pp. 195–202, 1998. View at Google Scholar · View at Scopus
  14. C. S. Han and P. Chain, “Finishing repeat regions automatically with Dupfinisher,” in Proceeding of the International Conference on Bioinformatics & Computational Biology, R. Hamid, Ed., pp. 141–146, Arabnia and Homayoun Valafar, CSREA Press, June 2006.
  15. D. Hyatt, G. L. Chen, P. F. Locascio, M. L. Land, F. W. Larimer, and L. J. Hauser, “Prodigal prokaryotic dynamic programming genefinding algorithm,” BMC Bioinformatics, vol. 11, article 119, 2010. View at Google Scholar
  16. A. Pati, N. N. Ivanova, N. Mikhailova et al., “GenePRIMP: a gene prediction improvement pipeline for prokaryotic genomes,” Nature Methods, vol. 7, no. 6, pp. 455–457, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. V. M. Markowitz, K. Mavromatis, N. N. Ivanova, I. M. A. Chen, K. Chu, and N. C. Kyrpides, “IMG ER: a system for microbial genome annotation expert review and curation,” Bioinformatics, vol. 25, no. 17, pp. 2271–2278, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. G. M. Garrity, J. A. Bell, and T. G. Lilburn, “Taxonomic outline of the procaryotes,” in Bergey's Manual of Systematic Bacteriology, Springer, New York, NY, USA, 2nd edition.
  19. E. Saunders, B. J. Tindall, R. Fähnrich et al., “Complete genome sequence of Haloterrigena turkmenica type strain (4kT),” Standards in Genomic Sciences, vol. 1, pp. 107–116, 2010. View at Google Scholar
  20. P. Yarza, M. Richter, J. Peplies et al., “The all-species living tree project: a 16S rRNA-based phylogenetic tree of all sequenced type strains,” Systematic and Applied Microbiology, vol. 31, no. 4, pp. 241–250, 2008. View at Publisher · View at Google Scholar · View at Scopus
  21. S. F. Altschul, T. L. Madden, A. A. Schäffer et al., “Gapped BLAST and PSI-BLAST: a new generation of protein database search programs,” Nucleic Acids Research, vol. 25, no. 17, pp. 3389–3402, 1997. View at Publisher · View at Google Scholar · View at Scopus
  22. L. Li, C. J. Stoeckert, and D. S. Roos, “OrthoMCL: identification of ortholog groups for eukaryotic genomes,” Genome Research, vol. 13, no. 9, pp. 2178–2189, 2003. View at Publisher · View at Google Scholar · View at Scopus
  23. R. C. Edgar, “MUSCLE: multiple sequence alignment with high accuracy and high throughput,” Nucleic Acids Research, vol. 32, no. 5, pp. 1792–1797, 2004. View at Publisher · View at Google Scholar · View at Scopus
  24. J. D. Thompson, J. C. Thierry, and O. Poch, “RASCAL: rapid scanning and correction of multiple sequence alignments,” Bioinformatics, vol. 19, no. 9, pp. 1155–1161, 2003. View at Publisher · View at Google Scholar · View at Scopus
  25. J. Castresana, “Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis,” Molecular Biology and Evolution, vol. 17, no. 4, pp. 540–552, 2000. View at Google Scholar · View at Scopus
  26. A. Stamatakis, “RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models,” Bioinformatics, vol. 22, no. 21, pp. 2688–2690, 2006. View at Publisher · View at Google Scholar · View at Scopus
  27. A. Stamatakis, P. Hoover, and J. Rougemont, “A rapid bootstrap algorithm for the RAxML web servers,” Systematic Biology, vol. 57, no. 5, pp. 758–771, 2008. View at Publisher · View at Google Scholar · View at Scopus
  28. N. D. Pattengale, M. Alipour, O. R. P. Bininda-Emonds, B. M. E. Moret, and A. Stamatakis, “How many bootstrap replicates are necessary?” Lecture Notes in Computer Science, vol. 5541, pp. 184–200, 2009. View at Publisher · View at Google Scholar · View at Scopus
  29. SI. Q. Le and O. Gascuel, “An improved general amino acid replacement matrix,” Molecular Biology and Evolution, vol. 25, no. 7, pp. 1307–1320, 2008. View at Publisher · View at Google Scholar · View at Scopus
  30. Z. Yang, “Maximum-likelihood estimation of phylogeny from DNA sequences when substitution rates differ over sites,” Molecular Biology and Evolution, vol. 10, no. 6, pp. 1396–1401, 1993. View at Google Scholar · View at Scopus
  31. D. L. Swofford, PAUP: Phylogenetic Analysis Using Parsimony (and Other Methods), Sinauer Associates, Sunderland, Mass, USA, 2002.
  32. C. Lee, C. Grasso, and M. F. Sharlow, “Multiple sequence alignment using partial order graphs,” Bioinformatics, vol. 18, no. 3, pp. 452–464, 2002. View at Google Scholar · View at Scopus
  33. D. R. Boone, I. M. Mathrani, Y. Liu, J. A. G. F. Menaia, R. A. Mah, and J. E. Boone, “Isolation and characterization of Methanohalophilus portucalensis sp. nov. and DNA reassociation study of the genus Methanohalophilus,” International Journal of Systematic Bacteriology, vol. 43, no. 3, pp. 430–437, 1993. View at Google Scholar · View at Scopus
  34. Y. Koga, M. Akagawa-Matsushita, M. Ohga, and M. Nishihara, “Taxonomic significance of the distribution of component parts of polar ether lipids in methanogens,” Systematic and Applied Microbiology, vol. 16, no. 3, pp. 342–351, 1993. View at Google Scholar · View at Scopus
  35. Y. Koga and M. Nakano, “A dendrogram of archaea based on lipid component parts composition and its relationship to rRNA phylogeny,” Systematic and Applied Microbiology, vol. 31, no. 3, pp. 169–182, 2008. View at Publisher · View at Google Scholar · View at Scopus
  36. D. Field, G. Garrity, T. Gray et al., “Towards a richer description of our complete collection of genomes and metagenomes: the “Minimum Information about a Genome Sequence” (MIGS) specification,” Nature Biotechnology, vol. 26, pp. 541–547, 2008. View at Google Scholar
  37. S. Ni and D. R. Boone, “Isolation and characterization of a dimethyl sulfide-degrading methanogen, Methanolobus siciliae HI350, from an oil well, characterization of M. siciliae T4/M(T), and emendation of M. siciliae,” International Journal of Systematic Bacteriology, vol. 41, no. 3, pp. 410–416, 1991. View at Google Scholar · View at Scopus
  38. S. Ni, C. R. Woese, H. C. Aldrich, and D. R. Boone, “Transfer of Methanolobus siciliae to the genus Methanosarcina, naming it Methanosarcina siciliae, and emendation of the genus Methanosarcina,” International Journal of Systematic Bacteriology, vol. 44, no. 2, pp. 357–359, 1994. View at Google Scholar · View at Scopus
  39. A. Y. Obraztsova, O. V. Shipin, L. V. Bezrukova, and S. S. Belyaev, “Properties of the coccoid methylotrophic methanogen, Methanococcoides euhalobius sp. nov,” Microbiology, vol. 56, pp. 523–527, 1987. View at Google Scholar
  40. I. A. Davidova, H. J. M. Harmsen, A. J. M. Stams, S. S. Belyaev, and A. J. B. Zehnder, “Taxonomic description of Methanococcoides euhalobius and its transfer to the Methanohalophilus genus,” Antonie van Leeuwenhoek, International Journal of General and Molecular Microbiology, vol. 71, no. 4, pp. 313–318, 1997. View at Publisher · View at Google Scholar · View at Scopus
  41. R. K. Thauer, A. K. Kaster, H. Seedorf, W. Buckel, and R. Hedderich, “Methanogenic archaea: ecologically relevant differences in energy conservation,” Nature Reviews Microbiology, vol. 6, no. 8, pp. 579–591, 2008. View at Publisher · View at Google Scholar · View at Scopus
  42. L. Rohlin and R. P. Gunsalus, “Carbon-dependent control of electron transfer and central carbon pathway genes for methane biosynthesis in the Archaean, Methanosarcina acetivorans strain C2A,” BMC Microbiology, vol. 10, article 62, 2010. View at Publisher · View at Google Scholar · View at Scopus
  43. D. R. Boone, “Class II. Methanococci class. nov,” in Bergey's Manual of Systematic Bacteriology, G. M. Garrity, D. R. Boone, and R. W. Castenholz, Eds., vol. 1, pp. 235–294, Springer, New York, NY, USA, 2nd edition, 2001. View at Google Scholar
  44. I. Anderson, L. E. Ulrich, B. Lupa et al., “Genomic characterization of methanomicrobiales reveals three classes of methanogens,” PLoS ONE, vol. 4, no. 6, Article ID e5797, 2009. View at Publisher · View at Google Scholar · View at Scopus
  45. N. F. Saunders, T. Thomas, P. M. Curmi et al., “Mechanisms of thermal adaptation revealed from the genomes of the Antarctic archaea Methanogenium frigidum and Methanococcoides burtonii,” Genome Research, vol. 13, pp. 1580–1588, 2003. View at Google Scholar
  46. J. E. Galagan, C. Nusbaum, A. Roy et al., “The genome of M. acetivorans reveals extensive metabolic and physiological diversity,” Genome Research, vol. 12, no. 4, pp. 532–542, 2002. View at Publisher · View at Google Scholar · View at Scopus
  47. U. Deppenmeier, A. Johann, T. Hartsch et al., “The genome of Methanosarcina mazei: evidence for lateral gene transfer between bacteria and archaea,” Journal of Molecular Microbiology and Biotechnology, vol. 4, no. 4, pp. 453–461, 2002. View at Google Scholar · View at Scopus
  48. D. L. Maeder, I. Anderson, T. S. Brettin et al., “The Methanosarcina barkeri genome: comparative analysis with Methanosarcina acetivorans and Methanosarcina mazei reveals extensive rearrangement within methanosarcinal genomes,” Journal of Bacteriology, vol. 188, no. 22, pp. 7922–7931, 2006. View at Publisher · View at Google Scholar · View at Scopus
  49. T. Ferguson, J. A. Soares, T. Lienard, G. Gottschalk, and J. A. Krzycki, “RamA, a protein required for reductive activation of corrinoid-dependent methylamine methyltransferase reactions in methanogenic archaea,” Journal of Biological Chemistry, vol. 284, no. 4, pp. 2285–2295, 2009. View at Publisher · View at Google Scholar · View at Scopus
  50. W. F. Fricke, H. Seedorf, A. Henne et al., “The genome sequence of Methanosphaera stadtmanae reveals why this human intestinal archaeon is restricted to methanol and H2 for methane formation and ATP synthesis,” Journal of Bacteriology, vol. 188, no. 2, pp. 642–658, 2006. View at Publisher · View at Google Scholar · View at Scopus
  51. J. A. Krzycki, “The direct genetic encoding of pyrrolysine,” Current Opinion in Microbiology, vol. 8, no. 6, pp. 706–712, 2005. View at Publisher · View at Google Scholar · View at Scopus
  52. G. Gottschalk and R. K. Thauer, “The Na+-translocating methyltransferase complex from methanogenic archaea,” Biochimica et Biophysica Acta—Bioenergetics, vol. 1505, no. 1, pp. 28–36, 2001. View at Publisher · View at Google Scholar · View at Scopus
  53. Y. Liu and W. B. Whitman, “Metabolic, phylogenetic, and ecological diversity of the methanogenic Archaea,” in Incredible Anaerobes: From Physiology to Genomics to Fuels, J. Wiegel, R. J. Maier, and M. W. W. Adams, Eds., pp. 171–189, New York Academy of Sciences, Boston, Mass, USA, 2008. View at Google Scholar
  54. G. Kulkarni, D. M. Kridelbaugh, A. M. Guss, and W. W. Metcalf, “Hydrogen is a preferred intermediate in the energy-conserving electron transport chain of Methanosarcina barkeri,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 37, pp. 15915–15920, 2009. View at Publisher · View at Google Scholar · View at Scopus
  55. C. Welte, V. Kallnik, M. Grapp, G. Bender, S. Ragsdale, and U. Deppenmeier, “Function of Ech hydrogenase in ferredoxin-dependent, membrane-bound electron transport in Methanosarcina mazei,” Journal of Bacteriology, vol. 192, no. 3, pp. 674–678, 2010. View at Publisher · View at Google Scholar · View at Scopus
  56. A. M. Guss, G. Kulkarni, and W. W. Metcalf, “Differences in hydrogenase Gene expression between Methanosarcina acetivorans and Methanosarcina barkeri,” Journal of Bacteriology, vol. 191, no. 8, pp. 2826–2833, 2009. View at Publisher · View at Google Scholar · View at Scopus
  57. Q. Li, L. Li, T. Rejtar, D. J. Lessner, B. L. Karger, and J. G. Ferry, “Electron transport in the pathway of acetate conversion to methane in the marine archaeon Methanosarcina acetivorans,” Journal of Bacteriology, vol. 188, no. 2, pp. 702–710, 2006. View at Publisher · View at Google Scholar · View at Scopus
  58. N. R. Buan and W. W. Metcalf, “Methanogenesis by Methanosarcina acetivorans involves two structurally and functionally distinct classes of heterodisulfide reductase,” Molecular Microbiology, vol. 75, no. 4, pp. 843–853, 2010. View at Publisher · View at Google Scholar · View at Scopus
  59. U. Deppenmeier, “The membrane-bound electron transport system of Methanosarcina species,” Journal of Bioenergetics and Biomembranes, vol. 36, no. 1, pp. 55–64, 2004. View at Publisher · View at Google Scholar · View at Scopus
  60. S. Bäumer, T. Ide, C. Jacobi, A. Johann, G. Gottschalk, and U. Deppenmeier, “The F420H2 dehydrogenase from Methanosarcina mazei is a redox-driven proton pump closely related to NADH dehydrogenases,” Journal of Biological Chemistry, vol. 275, no. 24, pp. 17968–17973, 2000. View at Publisher · View at Google Scholar · View at Scopus
  61. K. Saeki and H. Kumagai, “The rnf gene products in Rhodobacter capsulatus play an essential role in nitrogen fixation during anaerobic DMSO-dependent growth in the dark,” Archives of Microbiology, vol. 169, no. 5, pp. 464–467, 1998. View at Publisher · View at Google Scholar · View at Scopus
  62. T. H. Swartz, S. Ikewada, O. Ishikawa, M. Ito, and T. A. Krulwich, “The Mrp system: a giant among monovalent cation/proton antiporters?” Extremophiles, vol. 9, no. 5, pp. 345–354, 2005. View at Publisher · View at Google Scholar · View at Scopus
  63. S. Spring, R. Rachel, A. Lapidus et al., “Complete genome sequence of Thermosphaera aggregans type strain (M11TLT),” Standards in Genomic Sciences, vol. 2, pp. 245–259, 2010. View at Google Scholar
  64. K. Y. Pisa, C. Weidner, H. Maischak, H. Kavermann, and V. Müller, “The coupling ion in the methanoarchaeal ATP synthases: H+ vs. Na+ in the A1AO ATP synthase from the archaeon Methanosarcina mazei Gö1,” FEMS Microbiology Letters, vol. 277, no. 1, pp. 56–63, 2007. View at Publisher · View at Google Scholar · View at Scopus
  65. D. E. Graham and R. H. White, “Elucidation of methanogenic coenzyme biosyntheses: from spectroscopy to genomics,” Natural Product Reports, vol. 19, no. 2, pp. 133–147, 2002. View at Publisher · View at Google Scholar · View at Scopus
  66. D. E. Graham, H. Xu, and R. H. White, “Identification of coenzyme M biosynthetic phosphosulfolactate synthase. A new family of sulfonate-biosynthesizing enzymes,” Journal of Biological Chemistry, vol. 277, no. 16, pp. 13421–13429, 2002. View at Publisher · View at Google Scholar · View at Scopus
  67. T. Ogawa, T. Yoshimura, and H. Hemmi, “Geranylfarnesyl diphosphate synthase from Methanosarcina mazei: different role, different evolution,” Biochemical and Biophysical Research Communications, vol. 393, no. 1, pp. 16–20, 2010. View at Publisher · View at Google Scholar · View at Scopus
  68. D. E. Robertson, M. C. Lai, R. P. Gunsalus, and M. F. Roberts, “Composition, variation, and dynamics of major osmotic solutes in Methanohalophilus strain FDF1,” Applied and Environmental Microbiology, vol. 58, no. 8, pp. 2438–2443, 1992. View at Google Scholar · View at Scopus
  69. K. R. Sowers and R. P. Gunsalus, “Halotolerance in Methanosarcina spp.: role of N(ε)-acetyl-β-lysine, α- glutamate, glycine betaine, and K+ as compatible solutes for osmotic adaptation,” Applied and Environmental Microbiology, vol. 61, no. 12, pp. 4382–4388, 1995. View at Google Scholar · View at Scopus
  70. M. D. Edwards, I. R. Booth, and S. Miller, “Gating the bacterial mechanosensitive channels: MscS a new paradigm,” Current Opinion in Microbiology, vol. 7, no. 2, pp. 163–167, 2004. View at Publisher · View at Google Scholar · View at Scopus
  71. M. F. Roberts, M. C. Lai, and R. P. Gunsalus, “Biosynthetic pathways of the osmolytes Nε-acetyl-β-lysine, β- glutamine, and betaine in Methanohalophilus strain FDF1 suggested by nuclear magnetic resonance analyses,” Journal of Bacteriology, vol. 174, no. 20, pp. 6688–6693, 1992. View at Google Scholar · View at Scopus
  72. J. W. Abram and D. B. Nedwell, “Inhibition of methanogenesis by sulphate reducing bacteria competing for transferred hydrogen,” Archives of Microbiology, vol. 117, no. 1, pp. 89–92, 1978. View at Google Scholar · View at Scopus
  73. C. Marschall, P. Frenzel, and H. Cypionka, “Influence of oxygen on sulfate reduction and growth of sulfate-reducing bacteria,” Archives of Microbiology, vol. 159, no. 2, pp. 168–173, 1993. View at Publisher · View at Google Scholar · View at Scopus