Table of Contents Author Guidelines Submit a Manuscript
Archaea
Volume 2010, Article ID 820681, 9 pages
http://dx.doi.org/10.1155/2010/820681
Review Article

Protein Acetylation in Archaea, Bacteria, and Eukaryotes

Institute for Molecular Biosciences, Goethe University, Max-von-Laue-StraBe 9, 60438 Frankfurt, Germany

Received 1 June 2010; Accepted 22 July 2010

Academic Editor: Jerry Eichler

Copyright © 2010 Jörg Soppa. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. B. Polevoda and F. Sherman, “The diversity of acetylated proteins,” Genome Biology, vol. 3, no. 5, Article ID reviews0006, 2002. View at Google Scholar · View at Scopus
  2. T. Kouzarides, “Acetylation: a regulatory modification to rival phosphorylation?” EMBO Journal, vol. 19, no. 6, pp. 1176–1179, 2000. View at Google Scholar · View at Scopus
  3. B. Polevoda and F. Sherman, “N-terminal acetyltransferases and sequence requirements for N-terminal acetylation of eukaryotic proteins,” Journal of Molecular Biology, vol. 325, no. 4, pp. 595–622, 2003. View at Publisher · View at Google Scholar · View at Scopus
  4. J. Eichler and M. W. W. Adams, “Posttranslational protein modification in Archaea,” Microbiology and Molecular Biology Reviews, vol. 69, no. 3, pp. 393–425, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  5. S. D. Bell and S. P. Jackson, “Mechanism and regulation of transcription in archaea,” Current Opinion in Microbiology, vol. 4, no. 2, pp. 208–213, 2001. View at Publisher · View at Google Scholar · View at Scopus
  6. J. Soppa, “Basal and regulated transcription in Archaea,” Advances in Applied Microbiology, vol. 50, pp. 171–217, 2001. View at Publisher · View at Google Scholar · View at Scopus
  7. J. N. Reeeve, K. A. Bailey, W.-T. Li, F. Marc, K. Sandman, and D. J. Soares, “Archaeal histones: structures, stability and DNA binding,” Biochemical Society Transactions, vol. 32, no. 2, pp. 227–230, 2004. View at Publisher · View at Google Scholar · View at Scopus
  8. P. Londei, “Evolution of translational initiation: new insights from the archaea,” FEMS Microbiology Reviews, vol. 29, no. 2, pp. 185–200, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  9. E. R. Barry and S. D. Bell, “DNA replication in the archaea,” Microbiology and Molecular Biology Reviews, vol. 70, no. 4, pp. 876–887, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  10. H. P. Driessen, W. W. de Jong, G. I. Tesser, and H. Bloemendal, “The mechanism of N-terminal acetylation of proteins,” CRC Critical Reviews in Biochemistry, vol. 18, no. 4, pp. 281–325, 1985. View at Google Scholar · View at Scopus
  11. W. Dormeyer, S. Mohammed, B. Van Breukelen, J. Krijgsveld, and A. J. R. Heck, “Targeted analysis of protein termini,” Journal of Proteome Research, vol. 6, no. 12, pp. 4634–4645, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  12. P. Van Damme, J. Van Damme, H. Demol, A. Staes, J. Vandekerckhove, and K. Gevaert, “A review of COFRADIC techniques targeting protein N-terminal acetylation,” BMC Proceedings, vol. 3, supplement 6, article S6, 2009. View at Publisher · View at Google Scholar · View at PubMed
  13. X. Zhang, J. Ye, and P. Højrup, “A proteomics approach to study in vivo protein Nα-modifications,” Journal of Proteomics, vol. 73, no. 2, pp. 240–251, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  14. S. Goetze, E. Qeli, C. Mosimann et al., “Identification and functional characterization of N-terminally acetylated proteins in Drosophila melanogaster,” PLoS Biology, vol. 7, no. 11, Article ID e1000236, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  15. T. Arnesen, P. Van Damme, B. Polevoda et al., “Proteomics analyses reveal the evolutionary conservation and divergence of N-terminal acetyltransferases from yeast and humans,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 20, pp. 8157–8162, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  16. M. Gautschi, S. Just, A. Mun et al., “The yeast Nα-acetyltransferase NatA is quantitatively anchored to the ribosome and interacts with nascent polypeptides,” Molecular and Cellular Biology, vol. 23, no. 20, pp. 7403–7414, 2003. View at Publisher · View at Google Scholar · View at Scopus
  17. S. Spange, T. Wagner, T. Heinzel, and O. H. Krämer, “Acetylation of non-histone proteins modulates cellular signalling at multiple levels,” International Journal of Biochemistry and Cell Biology, vol. 41, no. 1, pp. 185–198, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  18. A. Martinez, J. A. Traverso, B. Valot et al., “Extent of N-terminal modifications in cytosolic proteins from eukaryotes,” Proteomics, vol. 8, no. 14, pp. 2809–2831, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  19. C.-S. Hwang, A. Shemorry, and A. Varshavsky, “N-terminal acetylation of cellular proteins creates specific degradation signals,” Science, vol. 327, no. 5968, pp. 973–977, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  20. K. K. Starheim, T. Arnesen, D. Gromyko, A. Ryningen, J. E. Varhaug, and J. R. Lillehaug, “Identification of the human Nα-acetyltransferase complex B (hNatB): a complex important for cell-cycle progression,” Biochemical Journal, vol. 415, no. 2, pp. 325–331, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  21. K. K. Starheim, D. Gromyko, R. Evjenth et al., “Knockdown of human Nα-terminal acetyltransferase complex C leads to p53-dependent apoptosis and aberrant human Arl8b localization,” Molecular and Cellular Biology, vol. 29, no. 13, pp. 3569–3581, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  22. Y. Gordiyenko, S. Deroo, M. Zhou, H. Videler, and C. V. Robinson, “Acetylation of L12 increases interactions in the Escherichia coli ribosomal stalk complex,” Journal of Molecular Biology, vol. 380, no. 2, pp. 404–414, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  23. B. Roy-Chaudhuri, N. Kirthi, T. Kelley, and G. M. Culver, “Suppression of a cold-sensitive mutation in ribosomal protein S5 reveals a role for RimJ in ribosome biogenesis,” Molecular Microbiology, vol. 68, no. 6, pp. 1547–1559, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  24. T. Hatakeyama and T. Hatakeyama, “Amino acid sequences of the ribosomal proteins HL30 and HmaL5 from the archaebacterium Halobacterium marismortui,” Biochimica et Biophysica Acta, vol. 1039, no. 3, pp. 343–347, 1990. View at Publisher · View at Google Scholar · View at Scopus
  25. M. Kimura, E. Arndt, T. Hatakeyama, T. Hatakeyama, and J. Kimura, “Ribosomal proteins in halobacteria,” Canadian Journal of Microbiology, vol. 35, no. 1, pp. 195–199, 1989. View at Google Scholar · View at Scopus
  26. S. Klussmann, P. Franke, U. Bergmann, S. Kostka, and B. Wittmann-Liebold, “N-terminal modification and amino-acid sequence of the ribosomal protein HmaS7 from Haloarcula marismortui and homology studies to other ribosomal proteins,” Biological Chemistry Hoppe-Seyler, vol. 374, no. 5, pp. 305–312, 1993. View at Google Scholar · View at Scopus
  27. M. Aivaliotis, K. Gevaert, M. Falb et al., “Large-scale identification of N-terminal peptides in the halophilic archaea Halobacterium salinarum and Natronomonas pharaonis,” Journal of Proteome Research, vol. 6, no. 6, pp. 2195–2204, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  28. M. Falb, M. Aivaliotis, C. Garcia-Rizo et al., “Archaeal N-terminal protein maturation commonly involves N-terminal acetylation: a large-scale proteomics survey,” Journal of Molecular Biology, vol. 362, no. 5, pp. 915–924, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  29. P. A. Kirkland, M. A. Humbard, C. J. Daniels, and J. A. Maupin-Furlow, “Shotgun proteomics of the haloarchaeon Haloferax volcanii,” Journal of Proteome Research, vol. 7, no. 11, pp. 5033–5039, 2008. View at Publisher · View at Google Scholar · View at PubMed
  30. A. J. Forbes, S. M. Patrie, G. K. Taylor, Y.-B. Kim, L. Jiang, and N. L. Kelleher, “Targeted analysis and discovery of posttranslational modifications in proteins from methanogenic archaea by top-down MS,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 9, pp. 2678–2683, 2004. View at Publisher · View at Google Scholar · View at PubMed
  31. W. Zhu, C. I. Reich, G. J. Olsen, C. S. Giometti, and J. R. Yates III, “Shotgun proteomics of Methanococcus jannaschii and insights into methanogenesis,” Journal of Proteome Research, vol. 3, no. 3, pp. 538–548, 2004. View at Publisher · View at Google Scholar
  32. D. T. Mackay, C. H. Botting, G. L. Taylor, and M. F. White, “An acetylase with relaxed specificity catalyses protein N-terminal acetylation in Sulfolobus solfataricus,” Molecular Microbiology, vol. 64, no. 6, pp. 1540–1548, 2007. View at Publisher · View at Google Scholar · View at PubMed
  33. M. A. Humbard, S. M. Stevens Jr., and J. A. Maupin-Furlow, “Posttranslational modication of the 20S proteasomal proteins of the archaeon Haloferax volcanii,” Journal of Bacteriology, vol. 188, no. 21, pp. 7521–7530, 2006. View at Publisher · View at Google Scholar · View at PubMed
  34. M. A. Humbard, G. Zhou, and J. A. Maupin-Furlow, “The N-terminal penultimate residue of 20S proteasome α1 influences its Nα acetylation and protein levels as well as growth rate and stress responses of Haloferax volcanii,” Journal of Bacteriology, vol. 191, no. 12, pp. 3794–3803, 2009. View at Publisher · View at Google Scholar · View at PubMed
  35. Y. Kimura, M. Takaoka, S. Tanaka et al., “Nα-acetylation and proteolytic activity of the yeast 20 S proteasome,” Journal of Biological Chemistry, vol. 275, no. 7, pp. 4635–4639, 2000. View at Publisher · View at Google Scholar
  36. E. Bártová, J. Krejci, A. Harničarová, G. Galiová, and S. Kozubek, “Histone modifications and nuclear architecture: a review,” Journal of Histochemistry and Cytochemistry, vol. 56, no. 8, pp. 711–721, 2008. View at Publisher · View at Google Scholar · View at PubMed
  37. K. K. Lee and J. L. Workman, “Histone acetyltransferase complexes: one size doesn't fit all,” Nature Reviews Molecular Cell Biology, vol. 8, no. 4, pp. 284–295, 2007. View at Publisher · View at Google Scholar · View at PubMed
  38. C. Hildmann, D. Riester, and A. Schwienhorst, “Histone deacetylases—an important class of cellular regulators with a variety of functions,” Applied Microbiology and Biotechnology, vol. 75, no. 3, pp. 487–497, 2007. View at Publisher · View at Google Scholar · View at PubMed
  39. R. A. Frye, “Phylogenetic classification of prokaryotic and eukaryotic Sir2-like proteins,” Biochemical and Biophysical Research Communications, vol. 273, no. 2, pp. 793–798, 2000. View at Publisher · View at Google Scholar · View at PubMed
  40. R. Marmorstein, “Structure and chemistry of the Sir2 family of NAD+-dependent histone/protein deactylases,” Biochemical Society Transactions, vol. 32, no. 6, pp. 904–909, 2004. View at Publisher · View at Google Scholar · View at PubMed
  41. G. Blander and L. Guarente, “The Sir2 family of protein deacetylases,” Annual Review of Biochemistry, vol. 73, pp. 417–435, 2004. View at Publisher · View at Google Scholar · View at PubMed
  42. R. Sawarkar, S. S. Visweswariah, W. Nellen, and V. Nanjundiah, “Histone deacetylases regulate multicellular development in the social amoeba Dictyostelium discoideum,” Journal of Molecular Biology, vol. 391, no. 5, pp. 833–848, 2009. View at Publisher · View at Google Scholar · View at PubMed
  43. H. Hess-Stumpp, “Histone deacetylase inhibitors and cancer: from cell biology to the clinic,” European Journal of Cell Biology, vol. 84, no. 2-3, pp. 109–121, 2005. View at Publisher · View at Google Scholar
  44. X.-J. Yang and E. Seto, “Lysine acetylation: codified crosstalk with other posttranslational modifications,” Molecular Cell, vol. 31, no. 4, pp. 449–461, 2008. View at Publisher · View at Google Scholar · View at PubMed
  45. B. J. North, B. L. Marshall, M. T. Borra, J. M. Denu, and E. Verdin, “The human Sir2 ortholog, SIRT2, is an NAD+-dependent tubulin deacetylase,” Molecular Cell, vol. 11, no. 2, pp. 437–444, 2003. View at Publisher · View at Google Scholar
  46. Y. Zhang, N. Li, C. Caron et al., “HDAC-6 interacts with and deacetylates tubulin and microtubules in vivo,” EMBO Journal, vol. 22, no. 5, pp. 1168–1179, 2003. View at Publisher · View at Google Scholar · View at PubMed
  47. R. Barak, K. Prasad, A. Shainskaya, A. J. Wolfe, and M. Eisenbach, “Acetylation of the chemotaxis response regulator CheY by acetyl-CoA synthetase purified from Escherichia coli,” Journal of Molecular Biology, vol. 342, no. 2, pp. 383–401, 2004. View at Publisher · View at Google Scholar · View at PubMed
  48. V. J. Starai and J. C. Escalante-Semerena, “Identification of the protein acetyltransferase (Pat) enzyme that acetylates acetyl-CoA synthetase in Salmonella enterica,” Journal of Molecular Biology, vol. 340, no. 5, pp. 1005–1012, 2004. View at Publisher · View at Google Scholar · View at PubMed
  49. J. G. Gardner, F. J. Grundy, T. M. Henkin, and J. C. Escalante-Semerena, “Control of acetyl-coenzyme A synthetase (AcsA) activity by acetylation/deacetylation without NAD+ involvement in Bacillus subtilis,” Journal of Bacteriology, vol. 188, no. 15, pp. 5460–5468, 2006. View at Publisher · View at Google Scholar · View at PubMed
  50. K. Zhao, X. Chai, and R. Marmorstein, “Structure and substrate binding properties of CobB, a Sir2 homolog protein deacetylase from Escherichia coli,” Journal of Molecular Biology, vol. 337, no. 3, pp. 731–741, 2004. View at Publisher · View at Google Scholar · View at PubMed
  51. R. Li, J. Gu, Y.-Y. Chen et al., “CobB regulates Escherichia coli chemotaxis by deacetylating the response regulator CheY,” Molecular Microbiology, vol. 76, no. 5, pp. 1162–1174, 2010. View at Publisher · View at Google Scholar · View at PubMed
  52. B. J. Yu, J. A. Kim, J. H. Moon, S. E. Ryu, and J.-G. Pan, “The diversity of lysine-acetylated proteins in Escherichia coli,” Journal of Microbiology and Biotechnology, vol. 18, no. 9, pp. 1529–1536, 2008. View at Google Scholar
  53. N. Altman-Price and M. Mevarech, “Genetic evidence for the importance of protein acetylation and protein deacetylation in the halophilic archaeon Haloferax volcanii,” Journal of Bacteriology, vol. 191, no. 5, pp. 1610–1617, 2009. View at Publisher · View at Google Scholar · View at PubMed
  54. T. Allers and M. Mevarech, “Archaeal genetics—the third way,” Nature Reviews Genetics, vol. 6, no. 1, pp. 58–73, 2005. View at Publisher · View at Google Scholar · View at PubMed
  55. M. Rother and W. W. Metcalf, “Genetic technologies for Archaea,” Current Opinion in Microbiology, vol. 8, no. 6, pp. 745–751, 2005. View at Publisher · View at Google Scholar · View at PubMed
  56. T. Hase, S. Wakabayashi, H. Matsubara et al., “Complete amino acid sequence of Halobacterium halobium ferredoxin containing an N(ε)-acetyllysine residue,” Journal of Biochemistry, vol. 83, no. 6, pp. 1657–1670, 1978. View at Google Scholar
  57. T. Hase, S. Wakabayashi, H. Matsubara, M. Mevarech, and M. M. Werber, “Amino acid sequence of 2Fe-2S ferredoxin from an extreme halophile, Halobacterium of the Dead Sea,” Biochimica et Biophysica Acta, vol. 623, no. 1, pp. 139–145, 1980. View at Google Scholar
  58. L. Zhang, E. E. Eugeni, M. R. Parthun, and M. A. Freitas, “Identification of novel histone post-translational modifications by peptide mass fingerprinting,” Chromosoma, vol. 112, no. 2, pp. 77–86, 2003. View at Publisher · View at Google Scholar · View at PubMed
  59. A. J. Forbes, S. M. Patrie, G. K. Taylor, Y.-B. Kim, L. Jiang, and N. L. Kelleher, “Targeted analysis and discovery of posttranslational modifications in proteins from methanogenic archaea by top-down MS,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 9, pp. 2678–2683, 2004. View at Publisher · View at Google Scholar · View at PubMed
  60. S. D. Bell, C. H. Botting, B. N. Wardleworth, S. P. Jackson, and M. F. White, “The interaction of Alba, a conserved archaeal chromatin protein, with Sir2 and its regulation by acetylation,” Science, vol. 296, no. 5565, pp. 148–151, 2002. View at Publisher · View at Google Scholar · View at PubMed
  61. V. L. Marsh, S. Y. Peak-Chew, and S. D. Bell, “Sir2 and the acetyltransferase, Pat, regulate the archaeal chromatin protein, Alba,” Journal of Biological Chemistry, vol. 280, no. 22, pp. 21122–21128, 2005. View at Publisher · View at Google Scholar · View at PubMed
  62. C. Jelinska, M. J. Conroy, C. J. Craven et al., “Obligate heterodimerization of the archaeal Alba2 protein with Alba1 provides a mechanism for control of DNA packaging,” Structure, vol. 13, no. 7, pp. 963–971, 2005. View at Publisher · View at Google Scholar · View at PubMed
  63. V. L. Marsh, A. T. McGeoch, and S. D. Bell, “Influence of chromatin and single strand binding proteins on the activity of an archaeal MCM,” Journal of Molecular Biology, vol. 357, no. 5, pp. 1345–1350, 2006. View at Publisher · View at Google Scholar · View at PubMed
  64. B. N. Wardleworth, R. J. M. Russell, S. D. Bell, G. L. Taylor, and M. F. White, “Structure of Alba: an archaeal chromatin protein modulated by acetylation,” EMBO Journal, vol. 21, no. 17, pp. 4654–4662, 2002. View at Publisher · View at Google Scholar
  65. K. Zhao, X. Chai, and R. Marmorstein, “Structure of a Sir2 substrate, Alba, reveals a mechanism for deacetylation-induced enhancement of DNA binding,” Journal of Biological Chemistry, vol. 278, no. 28, pp. 26071–26077, 2003. View at Publisher · View at Google Scholar · View at PubMed
  66. K. Hada, T. Nakashima, T. Osawa, H. Shimada, Y. Kakuta, and M. Kimura, “Crystal structure and functional analysis of an archaeal chromatin protein alba from the hyperthermophilic archaeon Pyrococcus horikoshii OT3,” Bioscience, Biotechnology and Biochemistry, vol. 72, no. 3, pp. 749–758, 2008. View at Publisher · View at Google Scholar
  67. M. M. Brent, A. Iwata, J. Carten, K. Zhao, and R. Marmorstein, “Structure and biochemical characterization of protein acetyltransferase from Sulfolobus solfataricus,” Journal of Biological Chemistry, vol. 284, no. 29, pp. 19412–19419, 2009. View at Publisher · View at Google Scholar · View at PubMed
  68. S. Biarrotte-Sorin and C. Mayer, “Cloning, purification, crystallization and preliminary crystallographic analysis of a hypothetical acetyltransferase from Pyrococcus furiosus,” Acta Crystallographica Section F, vol. 61, no. 3, pp. 269–270, 2005. View at Publisher · View at Google Scholar · View at PubMed
  69. C.-C. Cho, C.-W. Luo, and C.-H. Hsu, “Crystallization and preliminary X-ray diffraction analysis of PAT, an acetyltransferase from Sulfolobus solfataricus,” Acta Crystallographica Section F, vol. 64, no. 11, pp. 1049–1051, 2008. View at Publisher · View at Google Scholar · View at PubMed
  70. J. Min, J. Landry, R. Sternglanz, and R.-M. Xu, “Crystal structure of a SIR2 homolog-NAD complex,” Cell, vol. 105, no. 2, pp. 269–279, 2001. View at Publisher · View at Google Scholar
  71. J. L. Avalos, I. Celic, S. Muhammad, M. S. Cosgrove, J. D. Boeke, and C. Wolberger, “Structure of a Sir2 enzyme bound to an acetylated p53 peptide,” Molecular Cell, vol. 10, no. 3, pp. 523–535, 2002. View at Publisher · View at Google Scholar
  72. A. Li, Y. Xue, C. Jin, M. Wang, and X. Yao, “Prediction of Nε-acetylation on internal lysines implemented in Bayesian Discriminant Method,” Biochemical and Biophysical Research Communications, vol. 350, no. 4, pp. 818–824, 2006. View at Publisher · View at Google Scholar · View at PubMed
  73. Y.-D. Cai and L. Lu, “Predicting N-terminal acetylation based on feature selection method,” Biochemical and Biophysical Research Communications, vol. 372, no. 4, pp. 862–865, 2008. View at Publisher · View at Google Scholar · View at PubMed
  74. T. Meinnel and C. Giglione, “Tools for analyzing and predicting N-terminal protein modifications,” Proteomics, vol. 8, no. 4, pp. 626–649, 2008. View at Publisher · View at Google Scholar · View at PubMed
  75. A. Basu, K. L. Rose, J. Zhang et al., “Proteome-wide prediction of acetylation substrates,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 33, pp. 13785–13790, 2009. View at Publisher · View at Google Scholar · View at PubMed
  76. H. Neumann, S. Y. Peak-Chew, and J. W. Chin, “Genetically encoding Nε-acetyllysine in recombinant proteins,” Nature Chemical Biology, vol. 4, no. 4, pp. 232–234, 2008. View at Publisher · View at Google Scholar · View at PubMed