Table of Contents Author Guidelines Submit a Manuscript
Archaea
Volume 2010, Article ID 945785, 11 pages
http://dx.doi.org/10.1155/2010/945785
Review Article

Methanogens: Methane Producers of the Rumen and Mitigation Strategies

1Department of Animal & Poultry Science, University of Guelph, Guelph, ON, Canada N1G 2W1
2Department of Animal Science, University of Vermont, Burlington, VT 05405, USA

Received 15 August 2010; Revised 3 November 2010; Accepted 7 December 2010

Academic Editor: Reinhard Hensel

Copyright © 2010 Sarah E. Hook et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. E. Kebreab, K. Clark, C. Wagner-Riddle, and J. France, “Methane and nitrous oxide emissions from Canadian animal agriculture: a review,” Canadian Journal of Animal Science, vol. 86, no. 2, pp. 135–158, 2006. View at Google Scholar · View at Scopus
  2. K. A. Beauchemin, T. A. McAllister, and S. M. McGinn, “Dietary mitigation of enteric methane from cattle,” CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources, vol. 4, no. 9, pp. 1–18, 2009. View at Publisher · View at Google Scholar · View at Scopus
  3. S. Kumar, A. K. Puniya, M. Puniya et al., “Factors affecting rumen methanogens and methane mitigation strategies,” World Journal of Microbiology and Biotechnology, vol. 25, no. 9, pp. 1557–1566, 2009. View at Publisher · View at Google Scholar · View at Scopus
  4. B. M. Buddle, M. Denis, G. T. Attwood et al., “Strategies to reduce methane emissions from farmed ruminants grazing on pasture,” The Veterinary Journal. In press. View at Publisher · View at Google Scholar · View at Scopus
  5. R. J. Eckard, C. Grainger, and C. A. M. de Klein, “Options for the abatement of methane and nitrous oxide from ruminant production: a review,” Livestock Science, vol. 130, no. 1–3, pp. 47–56, 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. C. Martin, D. P. Morgavi, and M. Doreau, “Methane mitigation in ruminants: from microbe to the farm scale,” Animal, vol. 4, no. 3, pp. 351–365, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. M. Shibata and F. Terada, “Factors affecting methane production and mitigation in ruminants,” Animal Science Journal, vol. 81, no. 1, pp. 2–10, 2010. View at Publisher · View at Google Scholar · View at Scopus
  8. D. A. Lashof and D. R. Ahuja, “Relative contributions of greenhouse gas emissions to global warming,” Nature, vol. 344, no. 6266, pp. 529–531, 1990. View at Publisher · View at Google Scholar · View at Scopus
  9. P. Forster, V. Ramaswamy, P. Artaxo et al., “Changes in atmospheric constituents and in radiative forcing,” in Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, S. Solomon, D. Qin, M. Manning et al., Eds., Cambridge University Press, Cambridge, UK, 2007. View at Google Scholar
  10. IPCC, “Intergovernmental panel on climate change,” in Climate Change 2001: A Scientific Basis, J. T. Houghton, Y. Ding, and D. J. Griggs, Eds., Cambridge University Press, Cambridge, UK, 2001. View at Google Scholar
  11. J. L. Ellis, E. Kebreab, N. E. Odongo, B. W. McBride, E. K. Okine, and J. France, “Prediction of methane production from dairy and beef cattle,” Journal of Dairy Science, vol. 90, no. 7, pp. 3456–3467, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. National Research Council, The Scientific Basis for Estimating Air Emissions from Animal Feeding Operations, National Academy Press, Washington, DC, USA, 2002.
  13. A. J. McMichael, J. W. Powles, C. D. Butler, and R. Uauy, “Food, livestock production, energy, climate change, and health,” The Lancet, vol. 370, no. 9594, pp. 1253–1263, 2007. View at Publisher · View at Google Scholar · View at Scopus
  14. D. E. Johnson and G. M. Ward, “Estimates of animal methane emissions,” Environmental Monitoring and Assessment, vol. 42, no. 1-2, pp. 133–141, 1996. View at Publisher · View at Google Scholar · View at Scopus
  15. R. M. Murray, A. M. Bryant, and R. A. Leng, “Rates of production of methane in the rumen and large intestine of sheep,” British Journal of Nutrition, vol. 36, no. 1, pp. 1–14, 1976. View at Google Scholar · View at Scopus
  16. W. E. Balch, G. E. Fox, and L. J. Magrum, “Methanogens: reevaluation of a unique biological group,” Microbiological Reviews, vol. 43, no. 2, pp. 260–296, 1979. View at Google Scholar · View at Scopus
  17. K. D. Ashby, T. A. Casey, M. A. Rasmussen, and J. W. Petrich, “Steady-state and time-resolved spectroscopy of F420 extracted from methanogen cells and its utility as a marker for fecal contamination,” Journal of Agricultural and Food Chemistry, vol. 49, no. 3, pp. 1123–1127, 2001. View at Publisher · View at Google Scholar · View at Scopus
  18. P. E. Rouviere and R. S. Wolfe, “Novel biochemistry of methanogenesis,” Journal of Biological Chemistry, vol. 263, no. 17, pp. 7913–7916, 1988. View at Google Scholar · View at Scopus
  19. P. N. Hobson and C. S. Stewart, The Rumen Microbial Ecosystem, Chapman and Hall, London, UK, 1997.
  20. R. K. Thauer, A. K. Kaster, H. Seedorf, W. Buckel, and R. Hedderich, “Methanogenic archaea: ecologically relevant differences in energy conservation,” Nature Reviews Microbiology, vol. 6, no. 8, pp. 579–591, 2008. View at Publisher · View at Google Scholar · View at Scopus
  21. W. Kühn, K. Fiebig, and H. Hippe, “Distribution of cytochromes in methanogenic bacteria,” FEMS Microbiology Letters, vol. 20, no. 3, pp. 407–410, 1983. View at Publisher · View at Google Scholar · View at Scopus
  22. J. L. Garcia, B. K. C. Patel, and B. Ollivier, “Taxonomic, phylogenetic, and ecological diversity of methanogenic Archaea,” Anaerobe, vol. 6, no. 4, pp. 205–226, 2000. View at Publisher · View at Google Scholar · View at Scopus
  23. H. Zhang, J. K. DiBaise, A. Zuccolo et al., “Human gut microbiota in obesity and after gastric bypass,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 7, pp. 2365–2370, 2009. View at Publisher · View at Google Scholar · View at Scopus
  24. B. Dridi, M. Henry, A. El Khéchine, D. Raoult, and M. Drancourt, “High prevalence of Methanobrevibacter smithii and Methanosphaera stadtmanae detected in the human gut using an improved DNA detection protocol,” PLoS One, vol. 4, no. 9, Article ID e7063, 2009. View at Publisher · View at Google Scholar · View at Scopus
  25. T. L. Miller and C. Lin, “Description of Methanobrevibacter gottschalkii sp. nov., Methanobrevibacter thaueri sp. nov., Methanobrevibacter woesei sp. nov. and Methanobrevibacter wolinii sp. nov,” International Journal of Systematic and Evolutionary Microbiology, vol. 52, no. 3, pp. 819–822, 2002. View at Publisher · View at Google Scholar · View at Scopus
  26. A. Ferra, T. Brusa, A. Rutili, E. Canzi, and B. Biavati, “Isolation and characterization of Methanobrevibacter oralis sp. nov,” Current Microbiology, vol. 29, no. 1, pp. 7–12, 1994. View at Publisher · View at Google Scholar · View at Scopus
  27. R. E. Hungate, W. Smith, T. Bauchop, I. Yu, and J. C. Rabinowitz, “Formate as an intermediate in the bovine rumen fermentation,” Journal of Bacteriology, vol. 102, no. 2, pp. 389–397, 1970. View at Google Scholar · View at Scopus
  28. J. A. Patterson and R. B. Hespell, “Trimethylamine and methylamine as growth substrates for rumen bacteria and Methanosarcina barkeri,” Current Microbiology, vol. 3, no. 2, pp. 79–83, 1979. View at Google Scholar · View at Scopus
  29. D. B. Archer and J. E. Harris, “Methanogenic bacteria and methane production in various habitats,” in Anaerobic Bacteria in Habitats Other than Man, E. M. Barnes and G. C. Mead, Eds., pp. 185–223, Blackwell Scientific, Oxford, UK, 1986. View at Google Scholar
  30. R. Sharp, C. J. Ziemer, M. D. Stern, and D. A. Stahl, “Taxon-specific associations between protozoal and methanogen populations in the rumen and a model rumen system,” FEMS Microbiology Ecology, vol. 26, no. 1, pp. 71–78, 1998. View at Publisher · View at Google Scholar · View at Scopus
  31. K. Yanagita, Y. Kamagata, M. Kawaharasaki, T. Suzuki, Y. Nakamura, and H. Minato, “Phylogenetic analysis of methanogens in sheep rumen ecosystem and detection of Methanomicrobium mobile by fluorescence in situ hybridization,” Bioscience, Biotechnology and Biochemistry, vol. 64, no. 8, pp. 1737–1742, 2000. View at Google Scholar · View at Scopus
  32. A. D. G. Wright, A. J. Williams, B. Winder, C. T. Christophersen, S. L. Rodgers, and K. D. Smith, “Molecular diversity of rumen methanogens from sheep in Western Australia,” Applied and Environmental Microbiology, vol. 70, no. 3, pp. 1263–1270, 2004. View at Publisher · View at Google Scholar · View at Scopus
  33. A. D. Wright, A. F. Toovey, and C. L. Pimm, “Molecular identification of methanogenic archaea from sheep in Queensland, Australia reveal more uncultured novel archaea,” Anaerobe, vol. 12, no. 3, pp. 134–139, 2006. View at Publisher · View at Google Scholar · View at Scopus
  34. M. J. Nicholson, P. N. Evans, and K. N. Joblin, “Analysis of methanogen diversity in the rumen using temporal temperature gradient gel electrophoresis: identification of uncultured methanogens,” Microbial Ecology, vol. 54, no. 1, pp. 141–150, 2007. View at Publisher · View at Google Scholar · View at Scopus
  35. A. D. G. Wright, X. Ma, and N. E. Obispo, “Methanobrevibacter phylotypes are the dominant methanogens in sheep from Venezuela,” Microbial Ecology, vol. 56, no. 2, pp. 390–394, 2008. View at Publisher · View at Google Scholar · View at Scopus
  36. M. F. Whitford, R. M. Teather, and R. J. Forster, “Phylogenetic analysis of methanogens from the bovine rumen,” BMC Microbiology, vol. 1, pp. 1–5, 2001. View at Publisher · View at Google Scholar · View at Scopus
  37. G. N. Jarvis, C. Strömpl, D. M. Burgess, L. C. Skillman, E. R. B. Moore, and K. N. Joblin, “Isolation and identification of ruminal methanogens from grazing cattle,” Current Microbiology, vol. 40, no. 5, pp. 327–332, 2000. View at Google Scholar · View at Scopus
  38. A. D. G. Wright, C. H. Auckland, and D. H. Lynn, “Molecular diversity of methanogens in feedlot cattle from Ontario and Prince Edward Island, Canada,” Applied and Environmental Microbiology, vol. 73, no. 13, pp. 4206–4210, 2007. View at Publisher · View at Google Scholar · View at Scopus
  39. MI. Zhou, E. Hernandez-Sanabria, and L. G. Le, “Assessment of the microbial ecology of ruminal methanogens in cattle with different feed efficiencies,” Applied and Environmental Microbiology, vol. 75, no. 20, pp. 6524–6533, 2009. View at Publisher · View at Google Scholar · View at Scopus
  40. M. Zhou, E. Hernandez-Sanabria, and L. L. Guan, “Characterization of variation in rumen methanogenic communities under different dietary and host feed efficiency conditions, as determined by PCR-denaturing gradient gel electrophoresis analysis,” Applied and Environmental Microbiology, vol. 76, no. 12, pp. 3776–3786, 2010. View at Publisher · View at Google Scholar
  41. E. C. Shin, B. R. Choi, W. J. Lim et al., “Phylogenetic analysis of archaea in three fractions of cow rumen based on the 16S rDNA sequence,” Anaerobe, vol. 10, no. 6, pp. 313–319, 2004. View at Publisher · View at Google Scholar · View at Scopus
  42. T. Bauchop and D. O. Mountfort, “Cellulose fermentation by a rumen anaerobic fungus in both the absence and the presence of rumen methanogens,” Applied and Environmental Microbiology, vol. 42, no. 6, pp. 1103–1110, 1981. View at Google Scholar · View at Scopus
  43. D. O. Mountfort, R. A. Asher, and T. Bauchop, “Fermentation of cellulose to methane and carbon dioxide by a rumen anaerobic fungus in a triculture with Methanobrevibacter sp. strain RA1 and Methanosarcina barkeri,” Applied and Environmental Microbiology, vol. 44, no. 1, pp. 128–134, 1982. View at Google Scholar · View at Scopus
  44. K. N. Joblin, H. Matsui, G. E. Naylor, and K. Ushida, “Degradation of fresh ryegrass by methanogenic co-cultures of ruminal fungi grown in the presence or absence of Fibrobacter succinogenes,” Current Microbiology, vol. 45, no. 1, pp. 46–53, 2002. View at Publisher · View at Google Scholar · View at Scopus
  45. K. A. Johnson and D. E. Johnson, “Methane emissions from cattle,” Journal of Animal Science, vol. 73, no. 8, pp. 2483–2492, 1995. View at Google Scholar · View at Scopus
  46. J. B. Holter and A. J. Young, “Methane prediction in dry and lactating Holstein cows,” Journal of Dairy Science, vol. 75, no. 8, pp. 2165–2175, 1992. View at Google Scholar · View at Scopus
  47. D. Sauvant and S. Giger-Reverdin, “Empirical modelling meta-analysis of digestive interactions and CH4 production in ruminants,” in Energy and Protein Metabolism and Nutrition, I. Ortigues-Marty, N. Miraux, and W. Brand-Williams, Eds., pp. 561–563, Wageningen Academic, Wageningen, The Netherlands, 2007. View at Google Scholar
  48. J. A. S. Van Kessel and J. B. Russell, “The effect of pH on ruminal methanogenesis,” FEMS Microbiology Ecology, vol. 20, no. 4, pp. 205–210, 1996. View at Publisher · View at Google Scholar · View at Scopus
  49. J. G. Ferry, “Methane from acetate,” Journal of Bacteriology, vol. 174, no. 17, pp. 5489–5495, 1992. View at Google Scholar · View at Scopus
  50. I. K. Hindrichsen, H. R. Wettstein, A. Machmüller, and M. Kreuzer, “Methane emission, nutrient degradation and nitrogen turnover in dairy cows and their slurry at different milk production scenarios with and without concentrate supplementation,” Agriculture, Ecosystems and Environment, vol. 113, no. 1-4, pp. 150–161, 2006. View at Publisher · View at Google Scholar · View at Scopus
  51. J. C. Plaizier, D. O. Krause, G. N. Gozho, and B. W. McBride, “Subacute ruminal acidosis in dairy cows: the physiological causes, incidence and consequences,” The Veterinary Journal, vol. 176, no. 1, pp. 21–31, 2008. View at Publisher · View at Google Scholar · View at Scopus
  52. F. Dohme, A. Machmüller, A. Wasserfallen, and M. Kreuzer, “Ruminal methanogenesis as influenced by individual fatty acids supplemented to complete ruminant diets,” Letters in Applied Microbiology, vol. 32, no. 1, pp. 47–51, 2001. View at Publisher · View at Google Scholar · View at Scopus
  53. Y. Kong, M. He, T. McAlister, R. Seviour, and R. Forster, “Quantitative fluorescence in situ hybridization of microbial communities in the rumens of cattle fed different diets,” Applied and Environmental Microbiology, vol. 76, no. 20, pp. 6933–6938, 2010. View at Publisher · View at Google Scholar
  54. M. Eugène, D. Massé, J. Chiquette, and C. Benchaar, “Meta-analysis on the effects of lipid supplementation on methane production in lactating dairy cows,” Canadian Journal of Animal Science, vol. 88, no. 2, pp. 331–334, 2008. View at Google Scholar · View at Scopus
  55. K. A. Beauchemin, M. Kreuzer, F. O'Mara, and T. A. McAllister, “Nutritional management for enteric methane abatement: a review,” Australian Journal of Experimental Agriculture, vol. 48, no. 1-2, pp. 21–27, 2008. View at Publisher · View at Google Scholar · View at Scopus
  56. A. Machmüller, C. R. Soliva, and M. Kreuzer, “Methane-suppressing effect of myristic acid in sheep as affected by dietary calcium and forage proportion,” British Journal of Nutrition, vol. 90, no. 3, pp. 529–540, 2003. View at Publisher · View at Google Scholar · View at Scopus
  57. N. E. Odongo, M. M. Or-Rashid, E. Kebreab, J. France, and B. W. McBride, “Effect of supplementing myristic acid in dairy cow rations on ruminal methanogenesis and fatty acid profile in milk,” Journal of Dairy Science, vol. 90, no. 4, pp. 1851–1858, 2007. View at Publisher · View at Google Scholar · View at Scopus
  58. C. R. Soliva, L. Meile, A. Cieślak, M. Kreuzer, and A. Machmüller, “Rumen simulation technique study on the interactions of dietary lauric and myristic acid supplementation in suppressing ruminal methanogenesis,” British Journal of Nutrition, vol. 92, no. 4, pp. 689–700, 2004. View at Publisher · View at Google Scholar · View at Scopus
  59. S. M. McGinn, K. A. Beauchemin, T. Coates, and D. Colombatto, “Methane emissions from beef cattle: effects of monensin, sunflower oil, enzymes, yeast, and fumaric acid,” Journal of Animal Science, vol. 82, no. 11, pp. 3346–3356, 2004. View at Google Scholar · View at Scopus
  60. E. Jordan, D. K. Lovett, F. J. Monahan, J. Callan, B. Flynn, and F. P. O'Mara, “Effect of refined coconut oil or copra meal on methane output and on intake and performance of beef heifers,” Journal of Animal Science, vol. 84, no. 1, pp. 162–170, 2006. View at Google Scholar · View at Scopus
  61. K. A. Beauchemin, S. M. McGinn, and H. V. Petit, “Methane abatement strategies for cattle: lipid supplementation of diets,” Canadian Journal of Animal Science, vol. 87, no. 3, pp. 431–440, 2007. View at Google Scholar · View at Scopus
  62. G. P. Cosgrove, G. C. Waghorn, C. B. Anderson et al., “The effect of oils fed to sheep on methane production and digestion of ryegrass pasture,” Australian Journal of Experimental Agriculture, vol. 48, no. 1-2, pp. 189–192, 2008. View at Publisher · View at Google Scholar · View at Scopus
  63. C. Martin, J. Rouel, J. P. Jouany, M. Doreau, and Y. Chilliard, “Methane output and diet digestibility in response to feeding dairy cows crude linseed, extruded linseed, or linseed oil,” Journal of Animal Science, vol. 86, no. 10, pp. 2642–2650, 2008. View at Publisher · View at Google Scholar · View at Scopus
  64. A. Machmüller and M. Kreuzer, “Methane suppression by coconut oil and associated effects on nutrient and energy balance in sheep,” Canadian Journal of Animal Science, vol. 79, no. 1, pp. 65–72, 1999. View at Google Scholar · View at Scopus
  65. A. MacHmüller, D. A. Ossowski, and M. Kreuzer, “Comparative evaluation of the effects of coconut oil, oilseeds and crystalline fat on methane release, digestion and energy balance in lambs,” Animal Feed Science and Technology, vol. 85, no. 1-2, pp. 41–60, 2000. View at Publisher · View at Google Scholar · View at Scopus
  66. F. Dohme, A. Machmüller, A. Wasserfallen, and M. Kreuzer, “Comparative efficiency of various fats rich in medium-chain fatty acids to suppress ruminal methanogenesis as measured with RUSITEC,” Canadian Journal of Animal Science, vol. 80, no. 3, pp. 473–482, 2000. View at Google Scholar · View at Scopus
  67. E. Jordan, D. Kenny, M. Hawkins, R. Malone, D. K. Lovett, and F. P. O'Mara, “Effect of refined soy oil or whole soybeans on intake, methane output, and performance of young bulls,” Journal of Animal Science, vol. 84, no. 9, pp. 2418–2425, 2006. View at Publisher · View at Google Scholar · View at Scopus
  68. K. A. Beauchemin, S. M. McGinn, C. Benchaar, and L. Holtshausen, “Crushed sunflower, flax, or canola seeds in lactating dairy cow diets: effects on methane production, rumen fermentation, and milk production,” Journal of Dairy Science, vol. 92, no. 5, pp. 2118–2127, 2009. View at Publisher · View at Google Scholar · View at Scopus
  69. C. Grainger, R. Williams, T. Clarke, A. D. G. Wright, and R. J. Eckard, “Supplementation with whole cottonseed causes long-term reduction of methane emissions from lactating dairy cows offered a forage and cereal grain diet,” Journal of Dairy Science, vol. 93, no. 6, pp. 2612–2619, 2010. View at Publisher · View at Google Scholar · View at Scopus
  70. A. Machmüller, C. R. Soliva, and M. Kreuzer, “Effect of coconut oil and defaunation treatment on methanogenesis in sheep,” Reproduction Nutrition Development, vol. 43, no. 1, pp. 41–55, 2003. View at Google Scholar · View at Scopus
  71. B. J. Finlay, G. Esteban, K. J. Clarke, A. G. Williams, T. M. Embley, and R. P. Hirt, “Some rumen ciliates have endosymbiotic methanogens,” FEMS Microbiology Letters, vol. 117, no. 2, pp. 157–161, 1994. View at Publisher · View at Google Scholar · View at Scopus
  72. C. J. Newbold, B. Lassalas, and J. P. Jouany, “The importance of methanogens associated with ciliate protozoa in ruminal methane production in vitro,” Letters in Applied Microbiology, vol. 21, no. 4, pp. 230–234, 1995. View at Google Scholar · View at Scopus
  73. R. S. Hegarty, “Reducing rumen methane emissions through elimination of rumen protozoa,” Australian Journal of Agricultural Research, vol. 50, no. 8, pp. 1321–1327, 1999. View at Publisher · View at Google Scholar · View at Scopus
  74. R. S. Hegarty, S. H. Bird, B. A. Vanselow, and R. Woodgate, “Effects of the absence of protozoa from birth or from weaning on the growth and methane production of lambs,” British Journal of Nutrition, vol. 100, no. 6, pp. 1220–1227, 2008. View at Publisher · View at Google Scholar · View at Scopus
  75. D. P. Morgavi, J. P. Jouany, and C. Martin, “Changes in methane emission and rumen fermentation parameters induced by refaunation in sheep,” Australian Journal of Experimental Agriculture, vol. 48, no. 1-2, pp. 69–72, 2008. View at Publisher · View at Google Scholar · View at Scopus
  76. H. Guan, K. M. Wittenberg, K. H. Ominski, and D. O. Krause, “Efficacy of ionophores in cattle diets for mitigation of enteric methane,” Journal of Animal Science, vol. 84, no. 7, pp. 1896–1906, 2006. View at Publisher · View at Google Scholar · View at Scopus
  77. S. H. Bird, R. S. Hegarty, and R. Woodgate, “Modes of transmission of rumen protozoa between mature sheep,” Animal Production Science, vol. 50, no. 6, pp. 414–417, 2010. View at Publisher · View at Google Scholar · View at Scopus
  78. A. D. G. Wright, P. Kennedy, C. J. O'Neill et al., “Reducing methane emissions in sheep by immunization against rumen methanogens,” Vaccine, vol. 22, no. 29-30, pp. 3976–3985, 2004. View at Publisher · View at Google Scholar · View at Scopus
  79. Y. J. Williams, S. Popovski, S. M. Rea et al., “A vaccine against rumen methanogens can alter the composition of archaeal populations,” Applied and Environmental Microbiology, vol. 75, no. 7, pp. 1860–1866, 2009. View at Publisher · View at Google Scholar · View at Scopus
  80. D. N. Wedlock, G. Pedersen, M. Denis, D. Dey, P. H. Janssen, and B. M. Buddle, “Development of a vaccine to mitigate greenhouse gas emissions in agriculture: vaccination of sheep with methanogen fractions induces antibodies that block methane production in vitro,” New Zealand Veterinary Journal, vol. 58, no. 1, pp. 29–36, 2010. View at Google Scholar · View at Scopus
  81. F. D. Sauer, V. Fellner, R. Kinsman et al., “Methane output and lactation response in Holstein cattle with monensin or unsaturated fat added to the diet,” Journal of Animal Science, vol. 76, no. 3, pp. 906–914, 1998. View at Google Scholar · View at Scopus
  82. W. G. Bergen and D. B. Bates, “Ionophores: their effect on production efficiency and mode of action,” Journal of Animal Science, vol. 58, no. 6, pp. 1465–1483, 1984. View at Google Scholar · View at Scopus
  83. J. B. Russell and H. J. Strobel, “Effect of ionophores on ruminal fermentation,” Applied and Environmental Microbiology, vol. 55, no. 1, pp. 1–6, 1989. View at Google Scholar · View at Scopus
  84. M. Chen and M. J. Wolin, “Effect of monensin and lasalocid-sodium on the growth of methanogenic and rumen saccharolytic bacteria,” Applied and Environmental Microbiology, vol. 38, no. 1, pp. 72–77, 1979. View at Google Scholar · View at Scopus
  85. C. J. Van Nevel and D. I. Demeyer, “Effect of monensin on rumen metabolism in vitro,” Applied and Environmental Microbiology, vol. 34, no. 3, pp. 251–257, 1977. View at Google Scholar · View at Scopus
  86. N. E. Odongo, R. Bagg, G. Vessie et al., “Long-term effects of feeding monensin on methane production in lactating dairy cows,” Journal of Dairy Science, vol. 90, no. 4, pp. 1781–1788, 2007. View at Publisher · View at Google Scholar · View at Scopus
  87. S. E. Hook, K. S. Northwood, A. D. G. Wright, and B. W. McBride, “Long-term monensin supplementation does not significantly affect the quantity or diversity of methanogens in the rumen of the lactating dairy cow,” Applied and Environmental Microbiology, vol. 75, no. 2, pp. 374–380, 2009. View at Publisher · View at Google Scholar · View at Scopus
  88. M. H. Tavendale, L. P. Meagher, D. Pacheco, N. Walker, G. T. Attwood, and S. Sivakumaran, “Methane production from in vitro rumen incubations with Lotus pedunculatus and Medicago sativa, and effects of extractable condensed tannin fractions on methanogenesis,” Animal Feed Science and Technology, vol. 123-124, pp. 403–419, 2005. View at Publisher · View at Google Scholar · View at Scopus
  89. R. Puchala, B. R. Min, A. L. Goetsch, and T. Sahlu, “The effect of a condensed tannin-containing forage on methane emission by goats,” Journal of Animal Science, vol. 83, no. 1, pp. 182–186, 2005. View at Google Scholar · View at Scopus
  90. J. E. Carulla, M. Kreuzer, A. Machmüller, and H. D. Hess, “Supplementation of Acacia mearnsii tannins decreases methanogenesis and urinary nitrogen in forage-fed sheep,” Australian Journal of Agricultural Research, vol. 56, no. 9, pp. 961–970, 2005. View at Publisher · View at Google Scholar · View at Scopus
  91. T. T. Tiemann, C. E. Lascano, H. R. Wettstein, A. C. Mayer, M. Kreuzer, and H. D. Hess, “Effect of the tropical tannin-rich shrub legumes Calliandra calothyrsus and Flemingia macrophylla on methane emission and nitrogen and energy balance in growing lambs,” Animal, vol. 2, no. 5, pp. 790–799, 2008. View at Publisher · View at Google Scholar · View at Scopus
  92. K. A. Beauchemin, S. M. McGinn, T. F. Martinez, and T. A. McAllister, “Use of condensed tannin extract from quebracho trees to reduce methane emissions from cattle,” Journal of Animal Science, vol. 85, no. 8, pp. 1990–1996, 2007. View at Publisher · View at Google Scholar · View at Scopus
  93. S. G. de Oliveira, T. T. Berchielli, M. D. S. Pedreira, O. Primavesi, R. Frighetto, and M. A. Lima, “Effect of tannin levels in sorghum silage and concentrate supplementation on apparent digestibility and methane emission in beef cattle,” Animal Feed Science and Technology, vol. 135, no. 3-4, pp. 236–248, 2007. View at Publisher · View at Google Scholar · View at Scopus
  94. Y. Q. Guo, J. X. Liu, Y. Lu, W. Y. Zhu, S. E. Denman, and C. S. McSweeney, “Effect of tea saponin on methanogenesis, microbial community structure and expression of mcrA gene, in cultures of rumen micro-organisms,” Letters in Applied Microbiology, vol. 47, no. 5, pp. 421–426, 2008. View at Publisher · View at Google Scholar · View at Scopus
  95. L. Holtshausen, A. V. Chaves, K. A. Beauchemin et al., “Feeding saponin-containing Yucca schidigera and Quillaja saponaria to decrease enteric methane production in dairy cows,” Journal of Dairy Science, vol. 92, no. 6, pp. 2809–2821, 2009. View at Publisher · View at Google Scholar · View at Scopus
  96. S. Burt, “Essential oils: their antibacterial properties and potential applications in foods—a review,” International Journal of Food Microbiology, vol. 94, no. 3, pp. 223–253, 2004. View at Publisher · View at Google Scholar · View at Scopus
  97. S. Calsamiglia, M. Busquet, P. W. Cardozo, L. Castillejos, and A. Ferret, “Invited review: essential oils as modifiers of rumen microbial fermentation,” Journal of Dairy Science, vol. 90, no. 6, pp. 2580–2595, 2007. View at Publisher · View at Google Scholar · View at Scopus
  98. K. A. Beauchemin and S. M. McGinn, “Methane emissions from beef cattle: effects of fumaric acid, essential oil, and canola oil,” Journal of Animal Science, vol. 84, no. 6, pp. 1489–1496, 2006. View at Google Scholar · View at Scopus
  99. T. A. Wood, R. J. Wallace, A. Rowe et al., “Encapsulated fumaric acid as a feed ingredient to decrease ruminal methane emissions,” Animal Feed Science and Technology, vol. 152, no. 1-2, pp. 62–71, 2009. View at Publisher · View at Google Scholar · View at Scopus
  100. G. Molano, T. W. Knight, and H. Clark, “Fumaric acid supplements have no effect on methane emissions per unit of feed intake in wether lambs,” Australian Journal of Experimental Agriculture, vol. 48, no. 1-2, pp. 165–168, 2008. View at Publisher · View at Google Scholar · View at Scopus
  101. P. A. Foley, D. A. Kenny, J. J. Callan, T. M. Boland, and F. P. O'Mara, “Effect of DL-malic acid supplementation on feed intake, methane emission, and rumen fermentation in beef cattle,” Journal of Animal Science, vol. 87, no. 3, pp. 1048–1057, 2009. View at Publisher · View at Google Scholar · View at Scopus