Table of Contents Author Guidelines Submit a Manuscript
Volume 2011 (2011), Article ID 409156, 9 pages
Research Article

Widespread Disulfide Bonding in Proteins from Thermophilic Archaea

1UCLA-DOE Institute for Genomics and Proteomics, 611 Charles Young Drive East, Los Angeles, CA 90095, USA
2Department of Chemistry and Biochemistry, University of California, Los Angeles, 611 Charles Young Drive East, Los Angeles, CA 90095, USA

Received 17 May 2011; Accepted 16 July 2011

Academic Editor: M. Adams

Copyright © 2011 Julien Jorda and Todd O. Yeates. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Disulfide bonds are generally not used to stabilize proteins in the cytosolic compartments of bacteria or eukaryotic cells, owing to the chemically reducing nature of those environments. In contrast, certain thermophilic archaea use disulfide bonding as a major mechanism for protein stabilization. Here, we provide a current survey of completely sequenced genomes, applying computational methods to estimate the use of disulfide bonding across the Archaea. Microbes belonging to the Crenarchaeal branch, which are essentially all hyperthermophilic, are universally rich in disulfide bonding while lesser degrees of disulfide bonding are found among the thermophilic Euryarchaea, excluding those that are methanogenic. The results help clarify which parts of the archaeal lineage are likely to yield more examples and additional specific data on protein disulfide bonding, as increasing genomic sequencing efforts are brought to bear.