Table of Contents Author Guidelines Submit a Manuscript
Archaea
Volume 2011, Article ID 693253, 13 pages
http://dx.doi.org/10.1155/2011/693253
Review Article

Synthesis, Production, and Biotechnological Applications of Exopolysaccharides and Polyhydroxyalkanoates by Archaea

1Institute of Biomolecular Chemistry (ICB), National Research Council (CNR), Via Campi Flegrei 34, 80078 Pozzuoli, Italy
2Department of Environmental Sciences, University of Naples “Parthenope”, Centro Direzionale, Isola C4, 80143 Naples, Italy

Received 13 May 2011; Accepted 11 July 2011

Academic Editor: Alessandra Morana

Copyright © 2011 Annarita Poli et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. H. Kazak, E. T. Öner, and R. F. H. Dekker, “Extremophiles as sources of exopolysaccharides,” in Carbohydrate Polymers: Development, Properties and Applications, F. Columbus, Ed., pp. 605–619, Nova Science Publishers, Huntington, NY, USA, 2010. View at Google Scholar
  2. C. A. M. Nichols, J. Guezennec, and J. P. Bowman, “Bacterial exopolysaccharides from extreme marine environments with special consideration of the Southern Ocean, sea ice, and deep-sea hydrothermal vents: a review,” Marine Biotechnology, vol. 7, no. 4, pp. 253–271, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  3. B. Nicolaus, V. S. Moriello, L. Lama, A. Poli, and A. Gambacorta, “Polysaccharides from extremophilic microorganisms,” Origins of Life and Evolution of the Biosphere, vol. 34, no. 1-2, pp. 159–169, 2004. View at Publisher · View at Google Scholar · View at Scopus
  4. A. Ruffing and R. R. Chen, “Metabolic engineering of microbes for oligosaccharide and polysaccharide synthesis,” Microbial Cell Factories, vol. 5, article 25, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  5. B. Nicolaus, M. C. Manca, I. Romano, and L. Lama, “Production of an exopolysaccharide from two thermophilic archaea belonging to the genus Sulfolobus,” FEMS Microbiology Letters, vol. 109, no. 2-3, pp. 203–206, 1993. View at Google Scholar · View at Scopus
  6. C. Lapaglia and P. L. Hartzell, “Stress-induced production of biofilm in the hyperthermophile Archaeoglobus fulgidus,” Applied and Environmental Microbiology, vol. 63, no. 8, pp. 3158–3163, 1997. View at Google Scholar · View at Scopus
  7. K. D. Rinker and R. M. Kelly, “Growth physiology of the hyperthermophilic archaeon Thermococcus litoralis: development of a sulfur-free defined medium, characterization of an exopolysaccharide, and evidence of biofilm formation,” Applied and Environmental Microbiology, vol. 62, no. 12, pp. 4478–4485, 1996. View at Google Scholar · View at Scopus
  8. P. L. Hartzell, J. Millstein, and C. Lapaglia, “Biofilm formation in hyperthermophilic archaea,” Methods in Enzymology, vol. 310, pp. 335–349, 1999. View at Publisher · View at Google Scholar · View at Scopus
  9. M. Kambourova, R. Mandeva, D. Dimova, A. Poli, B. Nicolaus, and G. Tommonaro, “Production and characterization of a microbial glucan, synthesized by Geobacillus tepidamans V264 isolated from Bulgarian hot spring,” Carbohydrate Polymers, vol. 77, no. 2, pp. 338–343, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. M.-H. Lin, Y.-L. Yang, Y.-P. Chen et al., “A novel exopolysaccharide from the biofilm of Thermus aquaticus YT-1 induces the immune response through toll-like receptor 2,” Journal of Biological Chemistry, vol. 286, no. 20, pp. 17736–17745, 2011. View at Publisher · View at Google Scholar · View at PubMed
  11. J. Antón, I. Meseguer, and F. Rodríguez-Valera, “Production of an extracellular polysaccharide by Haloferax mediterranei,” Applied Enviromental Microbiology, vol. 54, no. 10, pp. 2381–2386, 1988. View at Google Scholar
  12. B. Nicolaus, L. Lama, E. Esposito et al., “Haloarcula spp able to biosynthesize exo- and endopolymers,” Journal of Industrial Microbiology and Biotechnology, vol. 23, no. 6, pp. 489–496, 1999. View at Google Scholar · View at Scopus
  13. N. A. Paramonov, L. A. S. Parolis, H. Parolis, I. F. Boán, J. Antón, and F. Rodríguez-Valera, “The structure of the exocellular polysaccharide produced by the Archaeon Haloferax gibbonsii (ATCC 33959),” Carbohydrate Research, vol. 309, no. 1, pp. 89–94, 1998. View at Publisher · View at Google Scholar · View at Scopus
  14. H. Parolis, L. A. S. Parolis, I. F. Boán et al., “The structure of the exopolysaccharide produced by the halophilic Archaeon Haloferax mediterranei strain R4 (ATCC 33500),” Carbohydrate Research, vol. 295, pp. 147–156, 1996. View at Publisher · View at Google Scholar · View at Scopus
  15. B. Nicolaus, M. Kambourova, and E. T. Oner, “Exopolysaccharides from extremophiles: from fundamentals to biotechnology,” Environmental Technology, vol. 31, no. 10, pp. 1145–1158, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  16. J. A. Mata, V. Béjar, P. Bressollier et al., “Characterization of exopolysaccharides produced by three moderately halophilic bacteria belonging to the family Alteromonadaceae,” Journal of Applied Microbiology, vol. 105, no. 2, pp. 521–528, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  17. A. Hanzlikova, A. Jandera, and F. Kunc, “Poly-3-hydroxybutyrate production and changes of bacterial community in the soil,” Folia Microbiologica, vol. 30, no. 1, pp. 58–64, 1985. View at Google Scholar · View at Scopus
  18. W. J. Page, “Bacterial polykhydroxyalkanoates, natural biodegradable plastics with a great future,” Canadian Journal of Microbiology, vol. 41, no. 13, pp. 1–3, 1995. View at Google Scholar · View at Scopus
  19. S. Y. Lee, “Bacterial polyhydroxyalkanoates,” Biotechnology and Bioengineering, vol. 49, no. 1, pp. 1–14, 1996. View at Publisher · View at Google Scholar · View at Scopus
  20. A. Antunes, M. Taborda, R. Huber, C. Moissl, M. F. Nobre, and M. S. da Costa, “Halorhabdus tiamatea sp. nov., a non-pigmented extremely halophilic archaeon from a deep-sea hypersaline anoxic basin of the Red Sea, and emended description of the genus Halorhabdus,” International Journal of Systematic and Evolutionary Microbiology, vol. 58, no. 1, pp. 215–220, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  21. J. Han, Q. Lu, L. Zhou, J. Zhou, and H. Xiang, “Molecular characterization of the phaECHm genes, required for biosynthesis of poly(3-hydroxybutyrate) in the extremely halophilic archaeon Haloarcula marismortui,” Applied and Environmental Microbiology, vol. 73, no. 19, pp. 6058–6065, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  22. F. F. Hezayen, B. H. A. Rehm, R. Eberhardt, and A. Steinbüchel, “Polymer production by two newly isolated extremely halophilic archaea: application of a novel corrosion-resistant bioreactor,” Applied Microbiology and Biotechnology, vol. 54, no. 3, pp. 319–325, 2000. View at Google Scholar · View at Scopus
  23. F. F. Hezayen, B. J. Tindall, A. Steinbüchel, and B. H. A. Rehm, “Characterization of a novel halophilic archaeon, Halobiforma haloterrestris gen. nov., sp. nov., and transfer of Natronobacterium nitratireducens to Halobiforma nitratireducens comb. nov,” International Journal of Systematic and Evolutionary Microbiology, vol. 52, no. 6, pp. 2271–2280, 2002. View at Publisher · View at Google Scholar · View at Scopus
  24. B. A. Legault, A. Lopez-Lopez, J. C. Alba-Casado et al., “Environmental genomics of “Haloquadratum walsbyi” in a saltern crystallizer indicates a large pool of accessory genes in an otherwise coherent species,” BMC Genomics, vol. 7, article 171, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  25. A. Legat, C. Gruber, K. Zangger, G. Wanner, and H. Stan-Lotter, “Identification of polyhydroxyalkanoates in Halococcus and other haloarchaeal species,” Applied Microbiology and Biotechnology, vol. 87, no. 3, pp. 1119–1127, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  26. J. G. Lillo and F. Rodriguez-Valera, “Effects of culture conditions on poly(β-hydroxybutyrate acid) production by Haloferax mediterranei,” Applied and Environmental Microbiology, vol. 56, no. 8, pp. 2517–2521, 1990. View at Google Scholar · View at Scopus
  27. B. H. A. Rehm, “Biogenesis of microbial polyhydroxyalkanoate granules: a platform technology for the production of tailor-made bioparticles,” Current Issues in Molecular Biology, vol. 9, no. 1, pp. 41–62, 2007. View at Google Scholar · View at Scopus
  28. I. Romano, A. Poli, I. Finore et al., “Haloterrigena hispanica sp. nov., an extremely halophilic archaeon from Fuente de Piedra, southern Spain,” International Journal of Systematic and Evolutionary Microbiology, vol. 57, no. 7, pp. 1499–1503, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  29. M. Wainø, B. J. Tindall, and K. Ingvorsen, “Halorhabdus utahensis gen. nov., sp. nov., an aerobic, extremely halophilic member of the Archaea from Great Salt Lake, Utah,” International Journal of Systematic and Evolutionary Microbiology, vol. 50, no. 1, pp. 183–190, 2000. View at Google Scholar · View at Scopus
  30. A. López-Cortés, A. Lanz-Landázuri, and J. Q. García-Maldonado, “Screening and isolation of PHB-producing bacteria in a polluted marine microbial mat,” Microbial Ecology, vol. 56, no. 1, pp. 112–120, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  31. L. Lama, B. Nicolaus, V. Calandrelli, M. C. Manca, I. Romano, and A. Gambacorta, “Effect of growth conditions on endo- and exopolymer biosynthesis in Anabaena cylindrica 10 C,” Phytochemistry, vol. 42, no. 3, pp. 655–659, 1996. View at Publisher · View at Google Scholar · View at Scopus
  32. J. Wingender, T. R. Neu, and H.-C. Flemming, “What are bacterial extracellular polymer substances?” in Microbial Extracellular Polymer Substance, J. Wingender, T. R. Neu, and H.-C. Flemming, Eds., pp. 1–19, Springer, Berlin, Germany, 1999. View at Google Scholar
  33. I. W. Sutherland, “Bacterial exopolysaccharides,” Advances in Microbial Physiology, vol. 8, pp. 143–213, 1972. View at Publisher · View at Google Scholar · View at Scopus
  34. I. W. Sutherland, “Biosynthesis of microbial exopolysaccharides,” Advances in Microbial Physiology, vol. 23, pp. 79–150, 1982. View at Publisher · View at Google Scholar · View at Scopus
  35. A. Poli, H. Kazak, B. Gürleyendaǧ et al., “High level synthesis of levan by a novel Halomonas species growing on defined media,” Carbohydrate Polymers, vol. 78, no. 4, pp. 651–657, 2009. View at Publisher · View at Google Scholar · View at Scopus
  36. G. M. Wolfaardt, J. R. Lawrence, and D. R. Korbe, “Function of EPS,” in Microbial Extracellular Polymeric Substances: Characterization, Structure and Function, J. Wingender, T. R. Neu, and H.-C. Flemming, Eds., pp. 171–200, Springer, New York, NY, USA, 1999. View at Google Scholar
  37. M. Krüger, M. Blumenberg, S. Kasten et al., “A novel, multi-layered methanotrophic microbial mat system growing on the sediment of the Black Sea,” Environmental Microbiology, vol. 10, no. 8, pp. 1934–1947, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  38. K. Junge, H. Eicken, and J. W. Deming, “Bacterial activity at 2 to 20C in Arctic wintertime Sea Ice,” Applied and Environmental Microbiology, vol. 70, no. 1, pp. 550–557, 2004. View at Publisher · View at Google Scholar · View at Scopus
  39. L. A. S. Parolis, H. Parolis, N. A. Paramonov, I. F. Boán, J. Antón, and F. Rodríguez-Valera, “Structural studies on the acidic exopolysaccharide from Haloferax denitrificans ATCC 35960,” Carbohydrate Research, vol. 319, no. 1–4, pp. 133–140, 1999. View at Publisher · View at Google Scholar
  40. K. D. Rinker and R. M. Kelly, “Effect of carbon and nitrogen sources on growth dynamics and exopolysaccharide production for the hyperthermophilic archaeon Thermococcus litoralis and bacterium Thermotoga maritima,” Biotechnology and Bioengineering, vol. 69, no. 5, pp. 537–547, 2000. View at Publisher · View at Google Scholar
  41. A. Poli, G. Anzelmo, and B. Nicolaus, “Bacterial exopolysaccharides from extreme marine habitats: production, characterization and biological activities,” Marine Drugs, vol. 8, no. 6, pp. 1779–1802, 2010. View at Publisher · View at Google Scholar · View at PubMed
  42. M. C. Manca, L. Lama, R. Improta, E. Esposito, A. Gambacorta, and B. Nicolaus, “Chemical composition of two exopolysaccharides from Bacillus thermoantarcticus,” Applied and Environmental Microbiology, vol. 62, no. 9, pp. 3265–3269, 1996. View at Google Scholar
  43. M. Sletmoen, G. Maurstad, P. Sikorski, B. S. Paulsen, and B. T. Stokke, “Characterisation of bacterial polysaccharides: steps towards single-molecular studies,” Carbohydrate Research, vol. 338, no. 23, pp. 2459–2475, 2003. View at Publisher · View at Google Scholar
  44. F. Zhong, W. Yokoyama, Q. Wang, and C. F. Shoemaker, “Rice starch, amylopectin, and amylose: molecular weight and solubility in dimethyl sulfoxide-based solvents,” Journal of Agricultural and Food Chemistry, vol. 54, no. 6, pp. 2320–2326, 2006. View at Publisher · View at Google Scholar · View at PubMed
  45. I. W. Sutherland, “Structure-function relationships in microbial exopolysaccharides,” Biotechnology Advances, vol. 12, no. 2, pp. 393–448, 1994. View at Publisher · View at Google Scholar
  46. A. Koerdt, J. Gödeke, J. Berger, K. M. Thormann, and S.-V. Albers, “Crenarchaeal biofilm formation under extreme conditions,” PLoS ONE, vol. 5, no. 11, Article ID e14104, 2010. View at Publisher · View at Google Scholar · View at PubMed
  47. R. Van Kranenburg, I. C. Boels, M. Kleerebezem, and W. M. De Vos, “Genetics and engineering of microbial exopolysaccharides for food: approaches for the production of existing and novel polysaccharides,” Current Opinion in Biotechnology, vol. 10, no. 5, pp. 498–504, 1999. View at Publisher · View at Google Scholar · View at Scopus
  48. I. Y. Lee, W. T. Seo, G. J. Kim, M. K. Kim, C. S. Park, and Y. H. Park, “Production of curdlan using sucrose or sugar cane molasses by two-step fed-batch cultivation of Agrobacterium species,” Journal of Industrial Microbiology and Biotechnology, vol. 18, no. 4, pp. 255–259, 1997. View at Publisher · View at Google Scholar · View at Scopus
  49. P. Ruas-Madiedo and C. G. De Los Reyes-Gavilán, “Invited review: methods for the screening, isolation, and characterization of exopolysaccharides produced by lactic acid bacteria,” Journal of Dairy Science, vol. 88, no. 3, pp. 843–856, 2005. View at Google Scholar · View at Scopus
  50. S. Y. Lee, S. J. Park, Y. Lee, and S. H. Lee, “Economic aspects of biopolymer production,” Biopolymers, vol. 10, pp. 307–337, 2003. View at Google Scholar
  51. S. Kalogiannis, G. Iakovidou, M. Liakopoulou-Kyriakides, D. A. Kyriakidis, and G. N. Skaracis, “Optimization of xanthan gum production by Xanthomonas campestris grown in molasses,” Process Biochemistry, vol. 39, no. 2, pp. 249–256, 2003. View at Publisher · View at Google Scholar · View at Scopus
  52. T. A. Vedyashkina, V. V. Revin, and I. N. Gogotov, “Optimizing the conditions of dextran synthesis by the bacterium Leuconostoc mesenteroides grown in a molasses-containing medium,” Applied Biochemistry and Microbiology, vol. 41, no. 4, pp. 361–364, 2005. View at Publisher · View at Google Scholar · View at Scopus
  53. R. M. Banik, A. Santhiagu, and S. N. Upadhyay, “Optimization of nutrients for gellan gum production by Sphingomonas paucimobilis ATCC-31461 in molasses based medium using response surface methodology,” Bioresource Technology, vol. 98, no. 4, pp. 792–797, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  54. M. Stredansky and E. Conti, “Xanthan production by solid state fermentation,” Process Biochemistry, vol. 34, no. 6-7, pp. 581–587, 1999. View at Publisher · View at Google Scholar · View at Scopus
  55. M. J. López, J. Moreno, and A. Ramos-Cormenzana, “The effect of olive mill wastewaters variability on xanthan production,” Journal of Applied Microbiology, vol. 90, no. 5, pp. 829–835, 2001. View at Publisher · View at Google Scholar · View at Scopus
  56. A. S. Kumar, K. Mody, and B. Jha, “Bacterial exopolysaccharides—a perception,” Journal of Basic Microbiology, vol. 47, no. 2, pp. 103–117, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  57. R. Fernandez-Castillo, F. Rodriguez-Valera, J. Gonzalez-Ramos, and F. Ruiz-Berraquero, “Accumulation of poly(β-hydroxybutyrate) by halobacteria,” Applied and Environmental Microbiology, vol. 51, no. 1, pp. 214–216, 1986. View at Google Scholar
  58. Q. Lu, J. Han, L. Zhou, J. Zhou, and H. Xiang, “Genetic and biochemical characterization of the poly(3-hydroxybutyrate-co- 3-hydroxyvalerate) synthase in Haloferax mediterranei,” Journal of Bacteriology, vol. 190, no. 12, pp. 4173–4180, 2008. View at Publisher · View at Google Scholar · View at PubMed
  59. M. Taran and H. Amirkhani, “Strategies of poly(3-hydroxybutyrate) synthesis by Haloarcula sp. IRU1 utilizing glucose as carbon source: optimization of culture conditions by Taguchi methodology,” International Journal of Biological Macromolecules, vol. 47, no. 5, pp. 632–634, 2010. View at Publisher · View at Google Scholar · View at PubMed
  60. T. Y. Huang, K. J. Duan, S. Y. Huang, and C. W. Chen, “Production of polyhydroxyalkanoates from inexpensive extruded rice bran and starch by Haloferax mediterranei,” Journal of Industrial Microbiology and Biotechnology, vol. 33, no. 8, pp. 701–706, 2006. View at Publisher · View at Google Scholar · View at PubMed
  61. P. Di Donato, G. Fiorentino, G. Anzelmo, G. Tommonaro, B. Nicolaus, and A. Poli, “Re-use of vegetable wastes as cheap substrates for extremophile biomass production,” Waste and Biomass Valorization, vol. 2, no. 2, pp. 103–111, 2011. View at Publisher · View at Google Scholar
  62. F. F. Hezayen, M. C. Gutiérrez, A. Steinbüchel, B. J. Tindall, and B. H. A. Rehm, “Halopiger aswanensis sp. nov., a polymer-producing and extremely halophilic archaeon isolated from hypersaline soil,” International Journal of Systematic and Evolutionary Microbiology, vol. 60, no. 3, pp. 633–637, 2010. View at Publisher · View at Google Scholar · View at PubMed
  63. M. Koller, P. Hesse, R. Bona, C. Kutschera, A. Atlić, and G. Braunegg, “Potential of various archae- and eubacterial strains as industrial polyhydroxyalkanoate producers from whey,” Macromolecular Bioscience, vol. 7, no. 2, pp. 218–226, 2007. View at Publisher · View at Google Scholar · View at PubMed
  64. M. Koller, P. Hesse, R. Bona, C. Kutschera, A. Atlić, and G. Braunegg, “Biosynthesis of high quality polyhydroxyalkanoate Co- and terpolyesters for potential medical application by the archaeon Haloferax mediterranei,” Macromolecular Symposia, vol. 253, pp. 33–39, 2007. View at Publisher · View at Google Scholar
  65. T. M. Don, C. W. Chen, and T. H. Chan, “Preparation and characterization of poly(hydroxyalkanoate) from the fermentation of Haloferax mediterranei,” Journal of Biomaterials Science, vol. 17, no. 12, pp. 1425–1438, 2006. View at Publisher · View at Google Scholar
  66. R. G. Kirk and M. Ginzburg, “Ultrastructure of two species of halobacterium,” Journal of Ultrasructure Research, vol. 41, no. 1-2, pp. 80–94, 1972. View at Google Scholar
  67. A. Oren, M. Ginzburg, B. Z. Ginzburg, L. I. Hochstein, and B. E. Volcani, “Haloarcula marismortui (Volcani) sp. nov., nom. rev., an extremely halophilic bacterium from the Dead Sea,” International Journal of Systematic Bacteriology, vol. 40, no. 2, pp. 209–210, 1990. View at Google Scholar
  68. A. Steinbuchel and H. E. Valentin, “Diversity of bacterial polyhydroxyalkanoic acids,” FEMS Microbiology Letters, vol. 128, no. 3, pp. 219–228, 1995. View at Publisher · View at Google Scholar
  69. H. J. Choi, J. Kim, and M. S. Jhon, “Viscoelastic characterization of biodegradable poly(3-hydroxybutyrate-co-3-hydroxyvalerate),” Polymer, vol. 40, no. 14, pp. 4135–4138, 1999. View at Google Scholar
  70. J. Quillaguamán, H. Guzmán, D. Van-Thuoc, and R. Hatti-Kaul, “Synthesis and production of polyhydroxyalkanoates by halophiles: current potential and future prospects,” Applied Microbiology and Biotechnology, vol. 85, no. 6, pp. 1687–1696, 2010. View at Publisher · View at Google Scholar · View at PubMed
  71. A. J. Anderson and J. P. Wynn, “Microbial polyhydroxyalkanoates, polysaccharides and lipids,” in Basic Biotechnology, C. Ratledge and B. Kristiansen, Eds., pp. 325–333, Cambridge University Press, New York, NY, USA, 2001. View at Google Scholar
  72. L. J. Chen and M. Wang, “Production and evaluation of biodegradable composites based on PHB-PHV copolymer,” Biomaterials, vol. 23, no. 13, pp. 2631–2639, 2002. View at Publisher · View at Google Scholar
  73. J. M. Pachence and J. Kohn, “Biodegradable polymers,” in Principles of Tissue Engineering, R. P. Lanza, R. Langer, and J. Vacanti, Eds., pp. 266–271, Academic Press, New York, NY, USA, 2000. View at Google Scholar
  74. K. Sudesh, H. Abe, and Y. Doi, “Synthesis, structure and properties of polyhydroxyalkanoates: biological polyesters,” Progress in Polymer Science, vol. 25, no. 10, pp. 1503–1555, 2000. View at Publisher · View at Google Scholar
  75. A. J. Anderson, G. W. Haywood, and E. A. Dawes, “Biosynthesis and composition of bacterial poly(hydroxyalkanoates),” International Journal of Biological Macromolecules, vol. 12, no. 2, pp. 102–105, 1990. View at Publisher · View at Google Scholar
  76. G. Braunneg, B. Sonnleitner, and R. M. Lafferty, “A rapid gas chromatography method for determination of polyhydroxyalkanoate from microbial biomass,” European Journal Microbiology Biotechnology, vol. 6, pp. 29–37, 1978. View at Google Scholar
  77. S. Y. Hahn, Y. K. Chang, B. S. Kim, and H. N. Chang, “Communication to the editor optimization of microbial poly(3- hydroxybutyrate) recovery using dispersions of sodium hypochlorite solution and chloroform,” Biotechnology and Bioengineering, vol. 44, no. 2, pp. 256–261, 1994. View at Publisher · View at Google Scholar · View at PubMed
  78. G. Strazzullo, A. Gambacorta, F. M. Vella et al., “Chemical-physical characterization of polyhydroxyalkanoates recovered by means of a simplified method from cultures of Halomonas campaniensis,” World Journal of Microbiology and Biotechnology, vol. 24, no. 8, pp. 1513–1519, 2008. View at Publisher · View at Google Scholar
  79. B. H. A. Rehm, “Polyester synthases: natural catalysts for plastics,” Biochemical Journal, vol. 376, no. 1, pp. 15–33, 2003. View at Publisher · View at Google Scholar · View at PubMed
  80. S. Philip, T. Keshavarz, and I. Roy, “Polyhydroxyalkanoates: biodegradable polymers with a range of applications,” Journal of Chemical Technology and Biotechnology, vol. 82, no. 3, pp. 233–247, 2007. View at Publisher · View at Google Scholar
  81. V. C. Kalia, S. Lal, and S. Cheema, “Insight in to the phylogeny of polyhydroxyalkanoate biosynthesis: horizontal gene transfer,” Gene, vol. 389, no. 1, pp. 19–26, 2007. View at Publisher · View at Google Scholar · View at PubMed
  82. J. Han, Q. Lu, L. Zhou, H. Liu, and H. Xiang, “Identification of the polyhydroxyalkanoate (PHA)-specific acetoacetyl coenzyme A reductase among multiple FabG paralogs in Haloarcula hispanica and reconstruction of the PHA biosynthetic pathway in Haloferax volcanii,” Applied and Environmental Microbiology, vol. 75, no. 19, pp. 6168–6175, 2009. View at Publisher · View at Google Scholar · View at PubMed
  83. F. F. Hezayen, A. Steinbüchel, and B. H. A. Rehm, “Biochemical and enzymological properties of the polyhydroxybutyrate synthase from the extremely halophilic archaeon strain 56,” Archives of Biochemistry and Biophysics, vol. 403, no. 2, pp. 284–291, 2002. View at Publisher · View at Google Scholar
  84. M. Mevarech, F. Frolow, and L. M. Gloss, “Halophilic enzymes: proteins with a grain of salt,” Biophysical Chemistry, vol. 86, no. 2-3, pp. 155–164, 2000. View at Publisher · View at Google Scholar
  85. M. Taran, “Utilization of petrochemical wastewater for the production of poly(3-hydroxybutyrate) by Haloarcula sp. IRU1,” Journal of Hazardous Materials, vol. 188, no. 1–3, pp. 26–28, 2011. View at Publisher · View at Google Scholar · View at PubMed
  86. J. Choi and S. Y. Lee, “Factors affecting the economics of polyhydroxyalkanoate production by bacterial fermentation,” Applied Microbiology and Biotechnology, vol. 51, no. 1, pp. 13–21, 1999. View at Publisher · View at Google Scholar
  87. Q. Ren, N. Sierro, M. Kellerhals, B. Kessler, and B. Witholt, “Properties of engineered poly-3-hydroxyalkanoates produced in recombinant Escherichia coli strains,” Applied and Environmental Microbiology, vol. 66, no. 4, pp. 1311–1320, 2000. View at Publisher · View at Google Scholar
  88. A. Steinbüchel, “Perspectives for biotechnological production and utilization of biopolymers: metabolic engineering of polyhydroxyalkanoate biosynthesis pathways as a successful example,” Macromolecular Bioscience, vol. 1, no. 1, pp. 1–24, 2001. View at Google Scholar
  89. M. Akiyama, T. Tsuge, and Y. Doi, “Environmental life cycle comparison of polyhydroxyalkanoates produced from renewable carbon resources by bacterial fermentation,” Polymer Degradation and Stability, vol. 80, no. 1, pp. 183–194, 2003. View at Publisher · View at Google Scholar
  90. J. I. Choi and S. Y. Lee, “Process analysis and economic evaluation for poly(3-hydroxybutyrate) production by fermentation,” Bioprocess Engineering, vol. 17, no. 6, pp. 335–342, 1997. View at Publisher · View at Google Scholar
  91. M. Koller, R. Bona, G. Braunegg et al., “Production of polyhydroxyalkanoates from agricultural waste and surplus materials,” Biomacromolecules, vol. 6, no. 2, pp. 561–565, 2005. View at Publisher · View at Google Scholar · View at PubMed
  92. R. S. Rao, R. S. Prakasham, K. K. Prasad, S. Rajesham, P. N. Sarma, and L. V. Rao, “Xylitol production by Candida sp.: parameter optimization using Taguchi approach,” Process Biochemistry, vol. 39, no. 8, pp. 951–956, 2004. View at Publisher · View at Google Scholar