Table of Contents Author Guidelines Submit a Manuscript
Archaea
Volume 2012 (2012), Article ID 873589, 10 pages
http://dx.doi.org/10.1155/2012/873589
Research Article

Identification of the Major Expressed S-Layer and Cell Surface-Layer-Related Proteins in the Model Methanogenic Archaea: Methanosarcina barkeri Fusaro and Methanosarcina acetivorans C2A

1Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA 90095, USA
2UCLA-DOE Institute for Genomics and Proteomics, University of California, Los Angeles, CA 90095, USA
3Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
4Mass Spectrometry Resource, Boston University School of Medicine, 670 Albany Street, Rm 511, Boston, MA 02118, USA
5OPX Biotechnologies, Inc. Research Division, 2425 55th Street, Boulder, CO 80301, USA
6Department of Biological Chemistry, University of California, Los Angeles, CA 90095, USA

Received 28 December 2011; Accepted 2 February 2012

Academic Editor: Jerry Eichler

Copyright © 2012 Lars Rohlin et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. Eichler et al., “The cell envelopes of haloarchaea: staying in shape in a world of salt,” in Prokaryotic Cell Wall Compounds: Structure and Biochemistry, H. König, H. Claus, and A. Varma, Eds., pp. 253–270, Springer, Berlin, Germany, 2010. View at Google Scholar
  2. H. König and H. Claus, “Cell envelopes of methanogens,” in Prokaryotic Cell Wall Compounds: Structure and Biochemistry, H. König, H. Claus, and A. Varma, Eds., pp. 231–252, Springer, Berlin, Germany, 2010. View at Google Scholar
  3. R. Rachel, “Cell envelopes of crenarchaeota and nanoarchaeota,” in Prokaryotic Cell Wall Compounds: Structure and Biochemistry, H. König, H. Claus, and A. Varma, Eds., pp. 271–294, Springer, Berlin, Germany, 2010. View at Google Scholar
  4. A. F. Ellen, B. Zolghadr, A. M. J. Driessen, and S. V. Albers, “Shaping the archaeal cell envelope,” Archaea, vol. 2010, Article ID 608243, 13 pages, 2010. View at Publisher · View at Google Scholar · View at Scopus
  5. K. R. Sowers, J. E. Boone, and R. P. Gunsalus, “Disaggregation of Methanosarcina spp. and growth as single cells at elevated osmolarity,” Applied and Environmental Microbiology, vol. 59, no. 11, pp. 3832–3839, 1993. View at Google Scholar · View at Scopus
  6. K. R. Sowers and R. P. Gunsalus, “Adaptation for growth at various saline concentrations by the archaebacterium Methanosarcina thermophila,” Journal of Bacteriology, vol. 170, no. 2, pp. 998–1002, 1988. View at Google Scholar · View at Scopus
  7. J. E. Galagan, C. Nusbaum, A. Roy et al., “The genome of M. acetivorans reveals extensive metabolic and physiological diversity,” Genome Research, vol. 12, no. 4, pp. 532–542, 2002. View at Publisher · View at Google Scholar · View at Scopus
  8. U. Deppenmeier, A. Johann, T. Hartsch et al., “The genome of Methanosarcina mazei: evidence for lateral gene transfer between bacteria and archaea,” Journal of Molecular Microbiology and Biotechnology, vol. 4, no. 4, pp. 453–461, 2002. View at Google Scholar · View at Scopus
  9. D. L. Maeder, I. Anderson, T. S. Brettin et al., “The Methanosarcina barkeri genome: comparative analysis with Methanosarcina acetivorans and Methanosarcina mazei reveals extensive rearrangement within methanosarcinal genomes,” Journal of Bacteriology, vol. 188, no. 22, pp. 7922–7931, 2006. View at Publisher · View at Google Scholar · View at Scopus
  10. M. Saleh, C. Song, S. Nasserulla, and L. G. Leduc, “Indicators from archaeal secretomes,” Microbiological Research, vol. 165, no. 1, pp. 1–10, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. D. R. Francoleon, P. Boontheung, Y. Yang et al., “S-layer, surface-accessible, and concanavalin a binding proteins of Methanosarcina acetivorans and Methanosarcina mazei,” Journal of Proteome Research, vol. 8, no. 4, pp. 1972–1982, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. L. Rohlin and R. P. Gunsalus, “Carbon-dependent control of electron transfer and central carbon pathway genes for methane biosynthesis in the Archaean, Methanosarcina acetivorans strain C2A,” BMC Microbiology, vol. 10, article 62, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. K. R. Sowers, D. E. Robertson, D. Noll, R. P. Gunsalus, and M. F. Roberts, “N epsilon-acetyl-beta-lysine: an osmolyte synthesized by methanogenic archaebacteria,” Proceedings of the National Academy of Sciences of the United States of America, vol. 87, no. 23, pp. 9083–9087, 1990. View at Publisher · View at Google Scholar · View at Scopus
  14. M. K. Oh, L. Rohlin, K. C. Kao, and J. C. Liao, “Global expression profiling of acetate-grown Escherichia coli,” Journal of Biological Chemistry, vol. 277, no. 15, pp. 13175–13183, 2002. View at Publisher · View at Google Scholar · View at Scopus
  15. L. Rohlin, J. D. Trent, K. Salmon, U. Kim, R. P. Gunsalus, and J. C. Liao, “Heat shock response of Archaeoglobus fulgidus,” Journal of Bacteriology, vol. 187, no. 17, pp. 6046–6057, 2005. View at Publisher · View at Google Scholar · View at Scopus
  16. S. F. Altschul, T. L. Madden, A. A. Schäffer et al., “Gapped BLAST and PSI-BLAST: a new generation of protein database search programs,” Nucleic Acids Research, vol. 25, no. 17, pp. 3389–3402, 1997. View at Publisher · View at Google Scholar · View at Scopus
  17. M. A. Larkin, G. Blackshields, N. P. Brown et al., “Clustal W and clustal X version 2.0,” Bioinformatics, vol. 23, no. 21, pp. 2947–2948, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. D. H. Huson and D. Bryant, “Application of phylogenetic networks in evolutionary studies,” Molecular Biology and Evolution, vol. 23, no. 2, pp. 254–267, 2006. View at Publisher · View at Google Scholar · View at Scopus
  19. C. L. Kingsford, K. Ayanbule, and S. L. Salzberg, “Rapid, accurate, computational discovery of Rho-independent transcription terminators illuminates their relationship to DNA uptake,” Genome Biology, vol. 8, no. 2, article R22, 2007. View at Publisher · View at Google Scholar · View at Scopus
  20. O. Emanuelsson, S. Brunak, G. von Heijne, and H. Nielsen, “Locating proteins in the cell using TargetP, SignalP and related tools,” Nature Protocols, vol. 2, no. 4, pp. 953–971, 2007. View at Publisher · View at Google Scholar · View at Scopus
  21. A. Krogh, B. Larsson, G. Von Heijne, and E. L. L. Sonnhammer, “Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes,” Journal of Molecular Biology, vol. 305, no. 3, pp. 567–580, 2001. View at Publisher · View at Google Scholar · View at Scopus
  22. D. H. Mathews, J. Sabina, M. Zuker, and D. H. Turner, “Expanded sequence dependence of thermodynamic parameters improves prediction of RNA secondary structure,” Journal of Molecular Biology, vol. 288, no. 5, pp. 911–940, 1999. View at Publisher · View at Google Scholar · View at Scopus
  23. N. F. W. Saunders, C. Ng, M. Raftery, M. Guilhaus, A. Goodchild, and R. Cavicchioli, “Proteomic and computational analysis of secreted proteins with type I signal peptides from the antarctic archaeon Methanococcoides burtonii,” Journal of Proteome Research, vol. 5, no. 9, pp. 2457–2464, 2006. View at Publisher · View at Google Scholar · View at Scopus