Table of Contents Author Guidelines Submit a Manuscript
Archaea
Volume 2013 (2013), Article ID 157529, 11 pages
http://dx.doi.org/10.1155/2013/157529
Research Article

A Single-Culture Bioprocess of Methanothermobacter thermautotrophicus to Upgrade Digester Biogas by CO2-to-CH4 Conversion with H2

1Electrochaea, LLC, 1005 N. Warson Road, Suite 201, St. Louis, MO 63132, USA
2The University of Chicago, 920 E. 58th Street, Chicago, IL 60637, USA
3Cornell University, 214 Riley-Robb Hall, Ithaca, NY 14853, USA

Received 31 May 2013; Revised 20 August 2013; Accepted 21 August 2013

Academic Editor: Alfons J. M. Stams

Copyright © 2013 Matthew R. Martin et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. L. T. Angenent, K. Karim, M. H. Al-Dahhan, B. A. Wrenn, and R. Domíguez-Espinosa, “Production of bioenergy and biochemicals from industrial and agricultural wastewater,” Trends in Biotechnology, vol. 22, no. 9, pp. 477–485, 2004. View at Publisher · View at Google Scholar · View at Scopus
  2. G. Lettinga, “Anaerobic digestion and wastewater treatment systems,” Antonie van Leeuwenhoek, vol. 67, no. 1, pp. 3–28, 1995. View at Publisher · View at Google Scholar · View at Scopus
  3. P. Weiland, “Biomass digestion in agriculture: a successful pathway for the energy production and waste treatment in Germany,” Engineering in Life Sciences, vol. 6, no. 3, pp. 302–309, 2006. View at Publisher · View at Google Scholar · View at Scopus
  4. K. W. Hanselmann, “Microbial energetics applied to waste repositories,” Cellular and Molecular Life Sciences, vol. 47, no. 7, pp. 645–687, 1991. View at Google Scholar · View at Scopus
  5. A. van Haandel and J. van der Lubbe, Handbook of Biological Wastewater Treatment, IWA Publishing, London, UK, 2nd edition, 2012.
  6. P. Weiland, “Biogas production: current state and perspectives,” Applied Microbiology and Biotechnology, vol. 85, no. 4, pp. 849–860, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. M. Pöschl, S. Ward, and P. Owende, “Evaluation of energy efficiency of various biogas production and utilization pathways,” Applied Energy, vol. 87, no. 11, pp. 3305–3321, 2010. View at Publisher · View at Google Scholar · View at Scopus
  8. Denmark, Notice of the Gas Regulation Section C-12 Provisions on Gas Qualities: Appendix 1 Quality and Delivery Specifications, Business and Growth Ministry, Copenhagen, Denmark, 2012.
  9. A. Molino, M. Migliori, Y. Ding, B. Bikson, G. Giordano, and G. Braccio, “Biogas upgrading via membrane process: modelling of pilot plant scale and the end uses for the grid injection,” Fuel, vol. 107, pp. 585–592, 2013. View at Google Scholar
  10. A. Molino, F. Nanna, Y. Ding, B. Bikson, and G. Braccio, “Biomethane production by anaerobic digestion of organic waste,” Fuel, vol. 103, pp. 1003–1009, 2013. View at Google Scholar
  11. P. Shao, M. Dal-Cin, A. Kumar, H. Li, and D. P. Singh, “Design and economics of a hybrid membrane-temperature swing adsorption process for upgrading biogas,” Journal of Membrane Science, vol. 413-414, pp. 17–28, 2012. View at Publisher · View at Google Scholar · View at Scopus
  12. G. Luo, S. Johansson, K. Boe, L. Xie, Q. Zhou, and I. Angelidaki, “Simultaneous hydrogen utilization and in situ biogas upgrading in an anaerobic reactor,” Biotechnology and Bioengineering, vol. 109, no. 4, pp. 1088–1094, 2012. View at Publisher · View at Google Scholar · View at Scopus
  13. P. L. McCarty and D. P. Smith, “Anaerobic wastewater treatment,” Environmental Science and Technology, vol. 20, no. 12, pp. 1200–1206, 1986. View at Google Scholar · View at Scopus
  14. S. K. Hoekman, A. Broch, C. Robbins, and R. Purcell, “CO2 recycling by reaction with renewably-generated hydrogen,” International Journal of Greenhouse Gas Control, vol. 4, no. 1, pp. 44–50, 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. L. Mets, 2009, System for the production of methane from CO2, Patent, United States.
  16. G. Luo and I. Angelidaki, “Integrated biogas upgrading and hydrogen utilization in an anaerobic reactor containing enriched hydrogenotrophic methanogenic culture,” Biotechnology and Bioengineering, vol. 109, pp. 2729–2736, 2012. View at Google Scholar
  17. G. Luo, W. Wang, and I. Angelidaki, “Anaerobic digestion for simultaneous sewage sludge treatment and CO biomethanation: process performance and microbial ecology,” Environtal Science and Technology, vol. 47, no. 18, pp. 10685–10693, 2013. View at Publisher · View at Google Scholar
  18. J. G. Zeikus and R. S. Wolfe, “Methanobacterium thermoautotrophicus sp. n., an anaerobic, autotrophic, extreme thermophile,” Journal of Bacteriology, vol. 109, no. 2, pp. 707–713, 1972. View at Google Scholar · View at Scopus
  19. D. R. Smith, L. A. Doucette-Stamm, C. Deloughery et al., “Complete genome sequence of Methanobacterium thermoautotrophicum ΔH: functional analysis and comparative genomics,” Journal of Bacteriology, vol. 179, no. 22, pp. 7135–7155, 1997. View at Google Scholar · View at Scopus
  20. B. Butsch and R. Bachofen, Temperature studies on methanogenic bacteria in Icelandic hot springs [Thesis], University of Zürich, Zürich, Switzerland, 1981.
  21. N. Schill, W. M. van Gulik, D. Voisard, and U. von Stockar, “Continuous cultures limited by a gaseous substrate: development of a simple, unstructured mathematical model and experimental verification with Methanobacterium thermoautotrophicum,” Biotechnology and Bioengineering, vol. 51, pp. 645–658, 1996. View at Google Scholar
  22. N. A. Schill, J. S. Liu, and U. Stockar, “Thermodynamic analysis of growth of Methanobacterium thermoautotrophicum,” Biotechnology and Bioengineering, vol. 64, pp. 74–81, 1999. View at Google Scholar
  23. N. Schill and U. von Stockar, “Thermodynamic analysis of Methanobacterium thermoautotrophicum,” Thermochimica Acta, vol. 251, pp. 71–77, 1995. View at Google Scholar · View at Scopus
  24. L. T. Angenent, D. Zheng, S. Sung, and L. Raskin, “Microbial community structure and activity in a compartmentalized, anaerobic bioreactor,” Water Environment Research, vol. 74, no. 5, pp. 450–461, 2002. View at Google Scholar · View at Scopus