Table of Contents Author Guidelines Submit a Manuscript
Archaea
Volume 2013 (2013), Article ID 370871, 12 pages
http://dx.doi.org/10.1155/2013/370871
Research Article

Virus-Host and CRISPR Dynamics in Archaea-Dominated Hypersaline Lake Tyrrell, Victoria, Australia

1Department of Earth and Planetary Science, University of California, Berkeley, 307 McCone Hall, Berkeley, CA 94720-4767, USA
2Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO, USA
3Department of Environmental Science, Policy, and Management, University of California, Berkeley, 54 Mulford Hall, Berkeley, CA 94720, USA
4Department of Biology, University of Copenhagen, Copenhagen, Denmark
5Marine Biology Research Division, Scripps Institution of Oceanography, La Jolla, CA, USA
6Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093-0202, USA
7Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA

Received 7 December 2012; Revised 17 May 2013; Accepted 27 May 2013

Academic Editor: Yoshizumi Ishino

Copyright © 2013 Joanne B. Emerson et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. F. Rohwer, D. Prangishvili, and D. Lindell, “Roles of viruses in the environment,” Environmental Microbiology, vol. 11, no. 11, pp. 2771–2774, 2009. View at Publisher · View at Google Scholar · View at Scopus
  2. C. A. Suttle, “Marine viruses—major players in the global ecosystem,” Nature Reviews Microbiology, vol. 5, no. 10, pp. 801–812, 2007. View at Publisher · View at Google Scholar · View at Scopus
  3. K. Porter, B. E. Russ, and M. L. Dyall-Smith, “Virus-host interactions in salt lakes,” Current Opinion in Microbiology, vol. 10, no. 4, pp. 418–424, 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. R.-A. Sandaa and A. Larsen, “Seasonal variations in virus-host populations in Norwegian coastal waters: focusing on the cyanophage community infecting marine Synechococcus spp,” Applied and Environmental Microbiology, vol. 72, no. 7, pp. 4610–4618, 2006. View at Publisher · View at Google Scholar · View at Scopus
  5. S. M. Short and C. A. Suttle, “Temporal dynamics of natural communities of marine algal viruses and eukaryotes,” Aquatic Microbial Ecology, vol. 32, no. 2, pp. 107–119, 2003. View at Google Scholar · View at Scopus
  6. B. Rodriguez-Brito, L. Li, L. Wegley et al., “Viral and microbial community dynamics in four aquatic environments,” ISME Journal, vol. 4, no. 6, pp. 739–751, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. J. B. Emerson, B. C. Thomas, K. Andrade, E. E. Allen, K. B. Heidelberg, and J. F. Banfield, “Dynamic viral populations in hypersaline systems as revealed by metagenomic assembly,” Applied and Environmental Microbiology, vol. 78, pp. 6309–6320, 2012. View at Google Scholar
  8. V. Kunin, S. He, F. Warnecke et al., “A bacterial metapopulation adapts locally to phage predation despite global dispersal,” Genome Research, vol. 18, no. 2, pp. 293–297, 2008. View at Publisher · View at Google Scholar · View at Scopus
  9. A. F. Andersson and J. F. Banfield, “Virus population dynamics and acquired virus resistance in natural microbial communities,” Science, vol. 320, no. 5879, pp. 1047–1050, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. R. E. Anderson, W. J. Brazelton, and J. A. Baross, “Using CRISPRs as ametagenomic tool to identify microbial hosts of a diffuse flow hydrothermal vent viral assemblage,” FEMS Microbiology Ecology, vol. 77, no. 1, pp. 120–133, 2011. View at Publisher · View at Google Scholar · View at Scopus
  11. G. W. Tyson and J. F. Banfield, “Rapidly evolving CRISPRs implicated in acquired resistance of microorganisms to viruses,” Environmental Microbiology, vol. 10, no. 1, pp. 200–207, 2008. View at Publisher · View at Google Scholar · View at Scopus
  12. J. F. Heidelberg, W. C. Nelson, T. Schoenfeld, and D. Bhaya, “Germ warfare in a microbial mat community: CRISPRs provide insights into the co-evolution of host and viral genomes,” PLoS ONE, vol. 4, no. 1, Article ID e4169, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. R. Barrangou, C. Fremaux, H. Deveau et al., “CRISPR provides acquired resistance against viruses in prokaryotes,” Science, vol. 315, no. 5819, pp. 1709–1712, 2007. View at Publisher · View at Google Scholar · View at Scopus
  14. F. J. M. Mojica, C. Díez-Villaseñor, J. García-Martínez, and E. Soria, “Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements,” Journal of Molecular Evolution, vol. 60, no. 2, pp. 174–182, 2005. View at Publisher · View at Google Scholar · View at Scopus
  15. R. Sorek, V. Kunin, and P. Hugenholtz, “CRISPR—a widespread system that provides acquired resistance against phages in bacteria and archaea,” Nature Reviews Microbiology, vol. 6, no. 3, pp. 181–186, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. B. Wiedenheft, S. H. Sternberg, and J. A. Doudna, “RNA-guided genetic silencing systems in bacteria and archaea,” Nature, vol. 482, no. 7385, pp. 331–338, 2012. View at Publisher · View at Google Scholar · View at Scopus
  17. R. T. DeBoy, E. F. Mongodin, J. B. Emerson, and K. E. Nelson, “Chromosome evolution in the Thermotogales: large-scale inversions and strain diversification of CRISPR sequences,” Journal of Bacteriology, vol. 188, no. 7, pp. 2364–2374, 2006. View at Publisher · View at Google Scholar · View at Scopus
  18. N. L. Held, A. Herrera, H. C. Quiroz, and R. J. Whitaker, “CRISPR associated diversity within a population of Sulfolobus islandicus,” PLoS ONE, vol. 5, no. 9, Article ID e12988, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. N. L. Held and R. J. Whitaker, “Viral biogeography revealed by signatures in Sulfolobus islandicus genomes,” Environmental Microbiology, vol. 11, no. 2, pp. 457–466, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. K. B. Heidelberg, W. C. Nelson, J. B. Holm, N. Eisenkolb, K. Andrade, and J. B. Emerson, “Characterization of eukaryotic microbial diversity in hypersaline Lake Tyrrell, Australia,” Frontiers in Microbiology, vol. 4, Article ID 115, 2013. View at Publisher · View at Google Scholar
  21. P. Narasingarao, S. Podell, J. A. Ugalde et al., “De novo metagenomic assembly reveals abundant novel major lineage of Archaea in hypersaline microbial communities,” ISME Journal, vol. 6, no. 1, pp. 81–93, 2012. View at Publisher · View at Google Scholar · View at Scopus
  22. Y. Peng, H. C. M. Leung, S. M. Yiu, and F. Y. L. Chin, “IDBA-UD: a de novo assembler for single-cell and metagenomic sequencing data with highly uneven depth,” Bioinformatics, vol. 28, no. 11, pp. 1420–1428, 2012. View at Publisher · View at Google Scholar
  23. M. Margulies, M. Egholm, W. E. Altman et al., “Genome sequencing in microfabricated high-density picolitre reactors,” Nature, vol. 437, pp. 376–380, 2005. View at Google Scholar
  24. H. Li and R. Durbin, “Fast and accurate short read alignment with Burrows-Wheeler transform,” Bioinformatics, vol. 25, no. 14, pp. 1754–1760, 2009. View at Publisher · View at Google Scholar · View at Scopus
  25. C. S. Miller, B. J. Baker, B. C. Thomas, S. W. Singer, and J. F. Banfield, “EMIRGE: reconstruction of full-length ribosomal genes from microbial community short read sequencing data,” Genome Biology, vol. 12, no. 5, article R44, 2011. View at Publisher · View at Google Scholar · View at Scopus
  26. R. C. Edgar, “Search and clustering orders of magnitude faster than BLAST,” Bioinformatics, vol. 26, no. 19, pp. 2460–2461, 2010. View at Publisher · View at Google Scholar · View at Scopus
  27. E. Pruesse, J. Peplies, and F. O. Glockner, “SINA: accurate high-throughput multiple sequence alignment of ribosomal RNA genes,” Bioinformatics, vol. 28, pp. 1823–1829, 2012. View at Google Scholar
  28. E. Pruesse, C. Quast, K. Knittel et al., “SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB,” Nucleic Acids Research, vol. 35, no. 21, pp. 7188–7196, 2007. View at Publisher · View at Google Scholar · View at Scopus
  29. C. Quast, E. Pruesse, P. Yilmaz et al., “The SILVA ribosomal RNA gene database project: improved data processing and web-based tools,” Nucleic Acids Research, vol. 41, pp. D590–D596, 2013. View at Google Scholar
  30. C. T. Skennerton, M. Imelfort, and G. W. Tyson, “Crass: identification and reconstruction of CRISPR from unassembled metagenomic data,” Nucleic Acids Research, vol. 41, no. 10, p. e105, 2013. View at Publisher · View at Google Scholar
  31. R. Danovaro, C. Corinaldesi, A. Dell'Anno et al., “Marine viruses and global climate change,” FEMS Microbiology Reviews, vol. 35, no. 6, pp. 993–1034, 2011. View at Publisher · View at Google Scholar · View at Scopus
  32. M. L. Dyall-Smith, F. Pfeiffer, K. Klee et al., “Haloquadratum walsbyi: limited diversity in a global pond,” PLoS ONE, vol. 6, no. 6, Article ID e20968, 2011. View at Publisher · View at Google Scholar · View at Scopus
  33. M. B. Duhaime and M. B. Sullivan, “Ocean viruses: rigorously evaluating the metagenomic sample-to-sequence pipeline,” Virology, vol. 434, pp. 181–186, 2012. View at Google Scholar
  34. M. B. Duhaime, L. Deng, B. T. Poulos, and M. B. Sullivan, “Towards quantitative metagenomics of wild viruses and other ultra-low concentration DNA samples: a rigorous assessment and optimization of the linker amplification method,” Environmental Microbiology, vol. 14, pp. 2526–2537, 2012. View at Google Scholar
  35. R. J. Parsons, M. Breitbart, M. W. Lomas, and C. A. Carlson, “Ocean time-series reveals recurring seasonal patterns of virioplankton dynamics in the northwestern Sargasso Sea,” ISME Journal, vol. 6, no. 2, pp. 273–284, 2012. View at Publisher · View at Google Scholar · View at Scopus
  36. S. Podell, J. A. Ugalde, P. Narasingarao, J. F. Banfield, K. B. Heidelberg, and E. E. Allen, “Assembly-driven community genomics of a hypersaline microbial ecosystem,” PLoS ONE, vol. 8, Article ID e61692, 2013. View at Google Scholar